Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+8=3\sqrt{x^3+8}\)
\(\left(x^2+8\right)^2=\left(3\sqrt{x^2+8}\right)^2\)
\(x^4+16x^2+64=9x^2+72\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)
Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))
Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4
Vậy nghiệm duy nhất của phương trình là 4
f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)
\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)
\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)
\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)
\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
b) đặt \(\sqrt{3x+1}=a\)(\(a\ge0\))
\(PT\Leftrightarrow\dfrac{a^2-1}{\sqrt{a^2+9}}+1=a\)
\(\Leftrightarrow\left(a-1\right)\left(1-\dfrac{a+1}{\sqrt{a^2+9}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+1=\sqrt{a^2+9}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)(tm)
c) bunyalovsky:
\(VT^2\le2\left(7-x+x-5\right)=4\)
\(\Leftrightarrow VT\le2\)
\(VF=\left(x-6\right)^2+2\ge2\)
Dấu = xảy ra khi x=6
a: =>\(\sqrt{3x-5}+2=x+1\)
\(\Leftrightarrow\sqrt{3x-5}=x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\x^2-2x+1-3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b: \(\Leftrightarrow x-15\sqrt{x}+56=x+11\)
=>-15 căn x=-45
=>x=9
c: =>căn 3x+1=3x-1
\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{3}\\9x^2-6x+1-3x-1=0\end{matrix}\right.\Leftrightarrow x=1\)
d: =>(3x+7)/(x+3)=16
=>16x+48=3x+7
=>13x=-41
=>x=-41/13