K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>5căn x+2-15y=15 và 5căn x+2-2y=71/3

=>-13y=4/3 và căn x+2-3y=3

=>y=-4/39 và căn x+2=3+3y=3-12/39=105/39

=>y=-4/39 và x=887/169

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

10 tháng 9 2020

1) \(\hept{\begin{cases}x^2+y^2-xy=1\\x+x^2y=2y^3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2=1+xy\\x\left(1+xy\right)=2y^3\end{cases}\Rightarrow x\left(x^2+y^2\right)=2y^3}\)

\(\Leftrightarrow\left(x^3-y^3\right)+\left(xy^2-y^3\right)=0\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy\right)+y^2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+2y^2+xy\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x^2+2y^2+xy=0\end{cases}}\)

+) \(x=y\Rightarrow\hept{\begin{cases}y^2+y^2-y^2=1\\y+y^3=2y^3\end{cases}\Rightarrow}x=y=\pm1\)

+) \(x^2+2y^2+xy=0\)Vì y=0 không là nghiệm của hệ nên ta chia 2 vế phương trình cho y2:

\(\Rightarrow\left(\frac{x}{y}\right)^2+\frac{x}{y}+2=0\)( Vô nghiệm)

Vậy hệ có nghiệm (1;1),(-1;-1).

2/ \(\hept{\begin{cases}x+y=\sqrt{x+3y}\\x^2+y^2+xy=3\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=x+3y\\x^2+y^2+xy=3\end{cases}}}\Rightarrow xy=x+3y-3\)

\(\Leftrightarrow\left(x-xy\right)+\left(3y-3\right)\Leftrightarrow\left(x-3\right)\left(1-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow y\in\varnothing\\y=1\Rightarrow x=1\end{cases}}\)

Vậy hệ có nghiệm (1;1).

4:

x+3y=4m+4 và 2x+y=3m+3

=>2x+6y=8m+8 và 2x+y=3m+3

=>5y=5m+5 và x+3y=4m+4

=>y=m+1 và x=4m+4-3m-3=m+1

x+y=4

=>m+1+m+1=4

=>2m+2=4

=>2m=2

=>m=1

3:

x+2y=3m+2 và 2x+y=3m+2

=>2x+4y=6m+4 và 2x+y=3m+2

=>3y=3m+2 và x+2y=3m+2

=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3

7 tháng 11 2018

a) ĐK: x>=2

pt <=>\(\sqrt{x+3}+\sqrt{x-2}=5\) (bình phương 2 vế không âm)

<=>\(x+3+x-2+2\sqrt{\left(x+3\right)\left(x-2\right)}=25\) (chuyển vế rút gọn)

<=>\(\sqrt{\left(x+3\right)\left(x-2\right)}=12-x\) 

<=>\(\hept{\begin{cases}12-x\ge0\\x^2+x-6=144-24x+x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x\le12\\25x=150\end{cases}}}\Leftrightarrow x=6\)( thỏa mãn điều kiện )

b)( Phương trình đối xứng loại 2, lấy hiệu hai phuowmh trình của hệ)

=> \(x^2-y^2=x-y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x+y-1=0\end{cases}}\)

Với x-y=0 <=> x=ythế vào một trong hai phương trình được một phương trình bậc 2. em tự giải tiếp nhé!

Với x+y-1=0 <=> x=1-y   thế vào  và làm như trên.

14 tháng 12 2018

Em hiểu câu a rồi nhưng câu b em không hiểu lắm cho dù đã học đối xứng loại 2

29 tháng 7 2018

ĐK:  \(x^2+2y+1\ge0\)

Phương trình (1) tương đương:

\(4y^2-4y\sqrt{x^2+2y+1}+x^2+2y+1=x^2-2xy+y^2\)

\(\Leftrightarrow\)\(\left(2y-\sqrt{x^2+2y+1}\right)^2=\left(x-y\right)^2\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x^2+2y+1}=3y-x\\\sqrt{x^2+2x+1}=x+y\end{cases}}\)

Trường hợp 1:   \(\sqrt{x^2+2x+1}=3y-x\)Bình phương 2 vế ta được:

\(\hept{\begin{cases}3y\ge x\\x^2+2y+1=9y^2-6xy+x^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}3y\ge x\\6xy=9y^2-2y-1\\xy=y^2+3y-3\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1;y=1\\x=\frac{415}{51};y=\frac{17}{3}\end{cases}}\)(t/m)

Trường hợp 2:   \(\sqrt{x^2+2y+1}=x+y\)Bình phương 2 vế ta được:

\(\hept{\begin{cases}x+y\ge0\\x^2+2y+1=x^2+2xy+y^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x+y\ge0\\2xy=-y^2+2y+1\\xy=y^2+3y-3\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1;y=1\left(t/m\right)\\x=\frac{41}{21};y=-\frac{7}{3}\left(L\right)\end{cases}}\)

Vậy hệ có nghiệm   \(\left(x;y\right)=\left(1;1\right);\left(\frac{415}{51};\frac{17}{3}\right)\)

30 tháng 5 2020

ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)

\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)

<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)

<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)

<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)

<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)

<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)

<=> \(x-3y-3=0\)

vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)

<=> x = 3y + 3

Thế vào phương trình trên ta có: 

\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)

<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk 

Vậy hệ vô nghiệm.

17 tháng 7 2023

2b. ĐKXĐ : \(x\ge-5\) (*)

Ta có \(\sqrt{x+5}=x^2-5\)

\(\Leftrightarrow4x^2-20-4\sqrt{x+5}=0\)

\(\Leftrightarrow4x^2+4x+1-4.\left(x+5\right)-4\sqrt{x+5}-1=0\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2\sqrt{x+5}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1+\sqrt{x+5}\right)\left(x-\sqrt{x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=-\sqrt{x+5}\left(1\right)\\x=\sqrt{x+5}\left(2\right)\end{matrix}\right.\)

Giải (1) có (1) \(\Leftrightarrow\left(x+1\right)^2=x+5\)  ;  ĐK: \(\left(x\le-1\right)\)

\(\Leftrightarrow x^2+x-4=0\Leftrightarrow x=\dfrac{-1\pm\sqrt{17}}{2}\) 

Kết hợp (*) và ĐK được \(x=\dfrac{-1-\sqrt{17}}{2}\) là nghiệm phương trình gốc

Giải (2) có (2) <=> \(x^2-x-5=0\) ; ĐK : \(x\ge0\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{21}}{2}\)

Kết hợp (*) và ĐK được \(x=\dfrac{1+\sqrt{21}}{2}\) là nghiệm phương trình gốc

Tập nghiệm \(S=\left\{\dfrac{-1-\sqrt{17}}{2};\dfrac{1+\sqrt{21}}{2}\right\}\)

17 tháng 7 2023

2c. ĐKXĐ \(x\ge1\) (*)

Đặt \(\sqrt{x-1}=a;\sqrt[3]{2-x}=b\left(a\ge0\right)\) (1) 

Ta có \(\sqrt{x-1}-\sqrt[3]{2-x}=5\Leftrightarrow a-b=5\)

Từ (1) có \(a^2+b^3=1\) (2)

Thế a = b + 5 vào (2) ta được 

\(b^3+\left(b+5\right)^2=1\Leftrightarrow b^3+b^2+10b+24=0\)

\(\Leftrightarrow b^3+8+b^2+10b+16=0\)

\(\Leftrightarrow\left(b+2\right).\left(b^2-b+12\right)=0\)

\(\Leftrightarrow b=-2\) (Vì \(b^2-b+12=\left(b-\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\forall b\)

Với b = -2 \(\Leftrightarrow\sqrt[3]{2-x}=-2\Leftrightarrow x=10\) (tm) 

Tập nghiệm \(S=\left\{10\right\}\)