\(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}=10\)

2) Tìm GTLN 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

1) \(x^2+\frac{1}{x^2}+16y^2+\frac{1}{y^2}=10\)

\(\Leftrightarrow\left(x^2+2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}\right)+\left(16y^2+2\cdot4y\cdot\frac{1}{y}+\frac{1}{y^2}\right)=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+\left(4y+\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{x}=0\\4y+\frac{1}{y}=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\4y^2+1=0\end{cases}}\) ( vô lí )

Phương trình vô nghiệm

22 tháng 2 2020

Câu 1 giống bạn kia:

Câu 2:Sửa đề nhé, tại thấy a,b thuộc N

\(M=\frac{b}{7\left(a+b\right)}\) ( đkxđ:\(a\ne-b\))

\(\Rightarrow\frac{1}{M}=\frac{7a}{b}+7\ge7\)\(\)( \(a,b\in N\Rightarrow a,b\ge0\))

\(\Rightarrow M\le7\)

\(\Rightarrow M\)đạt GTLN là 7 khi \(\text{a=0}\) và  \(b\ne0\)

18 tháng 1 2017

Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m

18 tháng 1 2017

Bài 2:

a) \(x+x^2=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)

b) \(0x-3=0\)

\(\Leftrightarrow0x=3\)

\(\Rightarrow vonghiem\)

c) \(3y=0\)

\(\Leftrightarrow y=0\)

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!