K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Cho mình xin lỗi là < 1 chứ không phải 11 đâu

27 tháng 5 2017

a, Ta có: \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+....+\left(1-\frac{99}{100}\right)\right]\)

\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-100+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)(đpcm)

b, Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(đpcm)

27 tháng 5 2017

a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...\)\(+\frac{99}{100}\)
Xét: \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
    = \(\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
    = \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)                                                          
    = \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)( có 99 số hạng là 1 )
    = \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(\left(99+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)( đpcm )
Vậy: ... 

23 tháng 8 2017

\(=\frac{-\frac{1}{9}+1-\frac{2}{10}+1-\frac{3}{11}+1-...-\frac{92}{100}+1}{\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}}\)

\(=\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}}\)

\(=\frac{8\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}}\)

= 8

22 tháng 3 2016

\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+.......+\frac{1}{100^2}<\frac{1}{2}\)

\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+........+\frac{1}{100^2}\)<\(\frac{1}{0.2}+\frac{1}{2.4}+\frac{1}{4.6}+.......+\frac{1}{98.100}\)

\(S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}<\frac{50}{100}=\frac{49}{100}<\frac{1}{2}\)

Vậy \(\frac{49}{100}<\frac{1}{2}\)

22 tháng 3 2016

Ta có 1/22<1/2*3

         1/42<1/3*4

         . . .

         1/1002<1/99*100

=> S<1/2*3+1/3*4+...+1/99*100

=> S<1/2-1/3+1/3-1/4+...+1/99-1/100

=>S<1/2-1/100

=>S<49/100

Mà 49/100<1/2

=>S<1/2

25 tháng 6 2016

Cái này dễ lắm nhưng mình ngại viết

25 tháng 6 2016

minh thach  cau lam duoc

15 tháng 3 2017

Ta có: B > 1

=> B = \(\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}-1+2}{2^{10}-3+2}=\frac{2^{10}+1}{2^{10}-1}=A\)

Vậy A < B

15 tháng 3 2017

\(\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

\(\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)

Nhận thấy: \(\frac{2}{2^{10}-3}>\frac{2}{2^{10}-1}\) do 210-3 < 210-1

Vậy: \(\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}+1}{2^{10}-1}\)

20 tháng 3 2017

tôi chỉ bn nè muốn làm thì hẳng hok thuộc đề bài vừa hok thuộc vùa nghĩ về bài sẽ nhưng thế nào

19 tháng 3 2017

ai trả lời đi

12 tháng 7 2017

B= 1/ 1.2.3 + 1/ 2.3 4 + 1/ 3.4.5 + .... + 1/ 18.19.20

Ta có:

1/ 1.2 - 1/ 2.3 = 2/ 1.2.3

1/ 2.3 - 1/3.4 = 2/ 2.3.4

Từ đó Ta có: B = 1/2 . ( 2/ 1.2.3 + 2/ 2,3.4 + ... + 2/ 18. 19. 20 )

= 1/2 .( 1/ 1.2 – 1/ 2.3 + 1/ 2.3 - .....- 1/19.20)

= 1/2. ( 1/ 1.2 – 1/ 19.20 ) = 1/ 2 . 189/380 = 189/760

13 tháng 7 2017

\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+....+\frac{1}{18\cdot19\cdot20}\)

\(B=\frac{3-1}{1\cdot2\cdot3}+\frac{4-2}{2\cdot3\cdot4}+...+\frac{20-18}{18\cdot19\cdot20}\)

\(2B=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{18\cdot19\cdot20}\)

\(2B=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\)

\(2B=\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\)

\(\Rightarrow B=\left(\frac{1}{1\cdot2}-\frac{1}{19\cdot20}\right)\div2=\frac{189}{380}\div2=\frac{189}{760}\)

30 tháng 4 2017

thực ra nó rất là dễ. giờ mình mới phát hiện ra chứ bữa trước mình làm cách dài lắm

Ta có :

\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)\)

\(=\frac{25}{12}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)>\frac{25}{12}\)( đpcm )

30 tháng 4 2017

Thanks bạn nha !