Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=1\dfrac{1989}{1991}\)
\(\Rightarrow2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow2\left(1-\dfrac{1}{x+1}\right)=\dfrac{3980}{1991}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{3980}{1991}.\dfrac{1}{2}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{1990}{1991}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{1990}{1991}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{1991}\)
\(\Rightarrow x+1=1991\)
\(\Rightarrow x=1990\)
Sửa đề
\(\dfrac{2}{1^2}\cdot\dfrac{6}{2^2}\cdot\dfrac{12}{3^3}\cdot.......\cdot\dfrac{110}{10^2}\cdot x=-20\)
\(\dfrac{2}{1\cdot1}\cdot\dfrac{2\cdot3}{2\cdot2}\cdot\cdot\cdot\cdot\dfrac{11\cdot10}{10\cdot10}\cdot x=-20\)
\(\dfrac{\left(2\cdot3\cdot4\cdot....\cdot11\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot10\right)}\cdot\dfrac{\left(1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot10\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot10\right)}\cdot x=-20\)
\(11\cdot x=-20\\ x=-\dfrac{20}{11}\)
a)
<=> (1/3)[3/(5.8) + 3/(8.11) + ... + 3/[x(x+3)] = 101/1540
<=> (1/3)[(1/5 - 1/8) + (1/8 - 1/11) + ... + 1/x - 1/(x+3)] = 101/1540
<=> (1/3)[1/5 - 1/(x+3)] = 101/1540
<=> 1/5 - 1/(x+3) = 303/1540
<=> 1/(x+3) = 1/5 - 303/1540 = 5/1540 = 1/308
<=> x = 305
b)
a)\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)
\(\dfrac{1.3}{5.8}+\dfrac{1.3}{8.11}+\dfrac{1.3}{11.14}+...+\dfrac{1.3}{x.\left(x+3\right)}=\dfrac{101.3}{1540}\)
\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{308}\)
308.1 = (x + 3).1
308 = x + 3
x = 308 - 3
x = 305
a)\(\left(-x-\dfrac{1}{9}\right)^2=\dfrac{4}{9}\)
\(\Rightarrow\left(-x-\dfrac{1}{9}\right)^2=\left(\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^2\)
*)Xét \(\left(-x-\dfrac{1}{9}\right)^2=\left(\dfrac{2}{3}\right)^2\)
\(\Rightarrow-x-\dfrac{1}{9}=\dfrac{2}{3}\Rightarrow-x=\dfrac{7}{9}\Rightarrow x=-\dfrac{7}{9}\)
*)Xét \(\left(-x-\dfrac{1}{9}\right)^2=\left(-\dfrac{2}{3}\right)^2\)
\(\Rightarrow-x-\dfrac{1}{9}=-\dfrac{2}{3}\Rightarrow-x=-\dfrac{5}{9}\Rightarrow x=\dfrac{5}{9}\)
b)\(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}=1\dfrac{1991}{1993}\)
\(\Rightarrow\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}=\dfrac{1991}{1993}\)
\(\Rightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1991}{1993}\)
\(\Rightarrow\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1991}{1993}\)
\(\Rightarrow2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1991}{1993}\)
\(\Rightarrow\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1991}{3986}\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1991}{3986}\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1991}{3986}\)\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{1993}\)
\(\Rightarrow x+1=1993\Rightarrow x=1992\)
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
a)=>1 - (5+x-7)=0
=>5+x-7 =1
=>5+x =8
=>x=3
Câu b) thiếu giá trị nha bạn
Mk học Trường THCS Nhơn Thọ ko phải
Trường THCS Lộc Ngãi nhưng mk cũng sẽ giúp bạn cho.
a) 1-( 5\(\dfrac{3}{8}\)+x-7\(\dfrac{5}{24}\)) : 16\(\dfrac{2}{3}\)=0
1-(\(\dfrac{43}{8}\)+x-\(\dfrac{173}{24}\)) : \(\dfrac{50}{3}\)=0
Xin lỗi nha câu a mk làm tới đây mk bận r không thể làm tiếp cho bạn nữa
Xin lỗi nha
\(\dfrac{1}{5}\left(x+\dfrac{1}{5}\right)+\dfrac{2}{5}\left(x+\dfrac{5}{3}\right)=\dfrac{98}{75}\\ =>\dfrac{1}{5}x+\dfrac{1}{25}+\dfrac{2}{5}x+\dfrac{2}{3}=\dfrac{98}{75}\\ =>\dfrac{3}{5}x=\dfrac{98}{75}-\dfrac{2}{3}-\dfrac{1}{25}=\dfrac{3}{5}\\ =>x=1\)
\(\dfrac{1}{5}\left(x+\dfrac{1}{5}\right)+\dfrac{2}{5}\left(x+\dfrac{5}{3}\right)=\dfrac{98}{75}\\ \Rightarrow\dfrac{1}{5}x+\dfrac{1}{25}+\dfrac{2}{5}x+\dfrac{2}{3}=\dfrac{98}{75}\\ \Rightarrow\left(\dfrac{1}{5}x+\dfrac{2}{5}x\right)+\left(\dfrac{1}{25}+\dfrac{2}{3}\right)=\dfrac{98}{75}\\ \Rightarrow\dfrac{3}{5}x+\dfrac{53}{75}=\dfrac{98}{75}\\ \Rightarrow\dfrac{3}{5}x=\dfrac{98}{75}-\dfrac{53}{75}\\ \Rightarrow\dfrac{3}{5}x=\dfrac{45}{75}=\dfrac{3}{5}\\ \Rightarrow x=\dfrac{3}{5}:\dfrac{3}{5}\\ \Rightarrow x=1\)
no help