K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 7 2023

Lời giải:
Gọi $x$ là độ dài cạnh của đám đất hình vuông. Khi đó, $x$ phải là ước của $52$ và $36$

Để $x$ lớn nhất thì $x=ƯCLN(52,36)$

$\Rightarrow x=4$ (m) 

Vậy chia đám đất thành các mảnh đất hình vuông có độ dài 4m.

18 tháng 12 2019

Câu hỏi của Nguyễn Phương Thảo 2008 - Toán lớp 6 - Học toán với OnlineMath

9 tháng 8 2019

             Gọi x là hình vuông lớn nhất . 

Theo đề bài ta có :

52 : x ; 36 : x  (x là số lớn nhất )

\(\Rightarrow x\inƯCLN\left(52;36\right)\)

\(ƯCLN\left(52;36\right)=2^2=4\)

Vậy với cách chia có độ dài là 4 m là lớn nhất 

          Chúc bạn  học tốt  !!!

15 tháng 12 2019

Bài giải

Gọi x là độ dài lớn nhất của cạnh hình (x \(\in\)N*)

Theo đề bài, có: 52 \(⋮\)x   ;   36 \(⋮\)x       và x lớn nhất

Suy ra x \(\in\)ƯCLN (52; 36)

52 = 22.13

36 = 22.32

ƯCLN (52; 36) = 22 = 4

Suy ra x = 4 (m)

Vậy độ dài lớn nhất của cạnh hình vuông là 4 m

Với cách chia là mỗi hình vuông có cạnh 4 m

Gọi độ dài lớn nhất của cạnh hình vuông là a

Ta có a chia hết cho 48 và 36; a lớn nhất

=> a = ƯCLN(48;36) = 12

Vậy độ dài lớn nhất của cạnh hình vuông là 12m

18 tháng 12 2022

Độ dài lớn nhất của cạnh hình vuông là ƯCLN(52; 36)

Ta có:

\(52=2^2.13\)

\(36=2^2.3^2\)

ƯCLN(52; 36) = 22 = 4

Vậy độ dài lớn nhất của cạnh hình vuông là 4 m