Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4b:
Ta có \(a-\sqrt{a}=\sqrt{b}-b\Leftrightarrow a+b=\sqrt{a}+\sqrt{b}\). (1)
Áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\).
Kết hợp với (1) ta có:
\(a+b\le\sqrt{2\left(a+b\right)}\Leftrightarrow0\le a+b\le2\).
Ta có: \(P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(\sqrt{a}+\sqrt{b}\right)^2}\) (Do \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))
\(=\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\) (Theo (1))
\(\Rightarrow P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\).
Áp dụng bất đẳng thức AM - GM cho hai số thực dương và kết hợp với \(a+b\le2\) ta có:
\(\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}=\left[\dfrac{\left(a+b\right)^2}{2}+\dfrac{8}{\left(a+b\right)^2}\right]+\dfrac{2012}{\left(a+b\right)^2}\ge2\sqrt{\dfrac{\left(a+b\right)^2}{2}.\dfrac{8}{\left(a+b\right)^2}}+\dfrac{2012}{2^2}=4+503=507\)
\(\Rightarrow P\ge507\).
Đẳng thức xảy ra khi a = b = 1.
Vậy Min P = 507 khi a = b = 1.
Giải nốt câu 4a:
ĐKXĐ: \(x\geq\frac{-1}{2}\).
Phương trình đã cho tương đương:
\(x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)
\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{2x+1}+1\right)^2=0\)
\(\Leftrightarrow\left(x+1-\sqrt{2x+1}-1\right)\left(x+1+\sqrt{2x+1}+1\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+1}\right)\left(x+\sqrt{2x+1}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+1}=0\left(1\right)\\x+\sqrt{2x+1}+2=0\left(2\right)\end{matrix}\right.\).
Ta thấy \(x+\sqrt{2x+1}+2>0\forall x\ge-\dfrac{1}{2}\).
Do đó phương trình (2) vô nghiệm.
Xét phương trình (1) \(\Leftrightarrow x=\sqrt{2x+1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=2x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\sqrt{2}+1>0>-\dfrac{1}{2}\left(TM\right)\\x=-\sqrt{2}+1< 0\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\).
Vậy nghiệm của phương trình là \(x=\sqrt{2}+1\).
giả sử các số đó là x;y với x>1 ; y>1 và không làm giảm tính tổng quát, ta có thể đặt: \(x\le y\)
Theo đề bài, ta có: \(\left(x+1\right)⋮y\) và \(\left(y+1\right)⋮x\)
Do vậy: \(\left[\left(x+1\right)\left(y+1\right)\right]⋮xy\)
\(\left(xy+x+y+1\right)⋮xy\Rightarrow\left(x+y+1\right)⋮xy\)
Hay x+y+1 = p.xy với p thuộc N
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=p\)
Vì \(x\ge1;y\ge1\) Nên rõ ràng là: \(0< \frac{1}{x}+\frac{1}{y}+\frac{1}{xy}\le1+1+1=3\)
Vậy p chỉ có thể nhận một trong các giá trị 1;2;3
- Với p = 3 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=3\Rightarrow\left(1;1\right)\)
- Với p = 2 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\) => Phương trình vô nghiệm
- Với p =1 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\Rightarrow\left(2;3\right)\)
Vậy có 3 cặp số thỏa mãn yêu cầu: (1;1) ; (2;3) ; (3;2)
P/s: Không chắc lắm. Nếu còn nhiều sai sót, mong các anh/chị, thầy cô sửa cho em
Trời đất, bạn MMS giỏi ghê. Thế mà mình nghĩ mãi không ra. Cảm ơn bạn nhiều
Đề ko rõ ràng \(\sqrt{x^2}+x+\dfrac{1}{4}\) hay \(\sqrt{x^2+x+\dfrac{1}{4}}\)??
Tại sao em lại nghĩ nhỏ hơn 0 thì không nhỏ hơn -0.5 được?
\(-3< 0\) nhưng \(-3< -0.5\) vẫn đúng đó thôi, 2 điều này đâu liên quan đâu nhỉ?
Khi nhân chéo 1 BPT thì: nếu mẫu số luôn dương BPT sẽ giữ nguyên chiều, nếu mẫu số luôn âm BPT sẽ đảo chiều.
Với a;b;c;d dương:
Khi em để dạng \(-\dfrac{a}{b}< -\dfrac{c}{d}\) và nhân chéo: \(-ad< -bc\) (nghĩa là nhân b, d lên, 2 đại lượng này dương nên BPT giữ nguyên chiều, đúng)
Còn "kiểu khác" kia của em \(b.\left(-c\right)< \left(-a\right).d\) nó từ bước nào ra được nhỉ?
thì vì cái P đó nó nhỏ hơn -0,5 nên bạn chuyển vế qua thành P+0,5<0 vẫn là 1 cách làm đúng (mình còn hay dùng cách này nữa mà)
còn khúc bạn lập luận vì nhỏ hơn 0 nên vẫn chưa chắc nhỏ hơn -0,5 có lẽ là bạn quên cái khúc mà nhỏ hơn 0 là bạn đã + 0,5 vào rồi nên nó ko phải là P nữa
và bài toán này có nhiều cách giải,bạn có thể làm như cách 1 và 2 cũng được,theo mình thì cách 2 mình ít khi làm vì phải cẩn thận ngồi xem dấu,cả 2 vế cùng dấu mới làm vậy được nên cũng hơi khó khăn,đó là theo mình thôi,còn bạn làm cách nào cũng được
Khi đặt tụ 19 lá dưới tụ còn lại thì lá bài của đối phương sẽ là lá bài thứ 34 (tụ ở trên có 33 lá)
nếu theo khả năng 2 : đếm đến 1 mà số đếm vẫn khác....... thì số bài đã lấy ra sẽ đúng 33 lá
Khi đó lá bài tiếp theo (úp) sẽ là lá bài của đối phương : lá thứ 34.
p/s: làm thử 1 trường hợp vì không chắc .-.
Anh hoc lớp 1 hay lớp 9 vây anh ?
Câu này dể mà .
Toán lớp 1 luôn đó anh .
1 công 1 tức nhiên băng 2 rồi
Trần Ngọc Anh Tú: Đúng rồi đó thôi xuông lớp 1 đi em chị dạy cho