Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ vòng tròn ta ta có thể thấy được vị trí góc pha mà thế năng bằng động năng là
\(\varphi=\left(2k+1\right)\frac{\pi}{4}\)
Cứ sau góc \(\frac{\pi}{2}\) thì thế năng bằng động năng tương ứng với T/4
hu kỳ dao động là T = 0.2s suy ra \(\omega=10\pi\)
\(k=\omega^2m=\frac{50N}{m}\)
Gọi A là biên độ giao động ta có : kA = 10 N; kA2/2 = 1J => A = 0,2 m = 20 cm
Khoảng thời gian ngắn nhất giữa 2 lần liên tiếp Q chịu tác dụng lực kéo của lò xo có độ lớn \(5\sqrt{3}\)
=> Chu kì giao động của vật T = 0,6s
Quãng đường ngắn nhất đi được là trong 0,4s = \(\frac{2T}{3}\) là s = 3A = 60 cm
Vậy B đúng
Cơ năng: \(W=0,064+0,096=0,16J\) \(\Rightarrow v_{max}=\sqrt{3,2}\)(m/s)
+ Thời điểm t1: \(v_1=\sqrt{1,92}\)(m/s)
+ Thời điểm t2: \(v_2=\sqrt{1,28}\)(m/s)
Biểu diễn sự biến thiên vận tốc bằng véc tơ quay ta có:
√3,2 √1,28 √1,92 v O M N
Do \(v_1^2+v_2^2=v_{max}^2\) nên OM vuông góc ON.
Như vậy góc quay là \(90^0\)
Thời gian: \(t=\frac{1}{4}T=\frac{\pi}{48}\Rightarrow T=\frac{\pi}{12}\)
\(\Rightarrow\omega=24\)(rad/s)
Biên độ: \(A=\frac{v_{max}}{\omega}=\frac{\sqrt{3,2}}{24}=0,07m=7cm\)
Vật ở VTCB lò xo giãn ra một đoạn: \(\Delta l\)
\(\Rightarrow\Delta l=\frac{g}{\omega^2}\Leftrightarrow\omega\sqrt{\frac{g}{\Delta l}}\)
Tần số của con lắc lò xo:
\(\Rightarrow f=\frac{\omega}{2\pi}=\frac{1}{2\pi}\sqrt{\frac{g}{\Delta l}}\)
k=100N/m
x=0,03m
v=2\(\pi.10^{-2}m\)/s
W=0,5=\(\frac{1}{2}\)m\(\omega^2.A^2\) \(\Rightarrow\)m=\(\frac{1}{\omega^2A^2}\)
Dùng công thức độc lập:
\(\frac{x^2}{A^2}+\frac{v^2}{\omega^2A^2}=1\\ \Leftrightarrow x^2m\omega^2+v^2.m=1\\ \Leftrightarrow x^2.k+v^2.m=1\)
\(\Rightarrow m\)
Có m thay vào \(\omega=\sqrt{\frac{k}{m}}\)
Có \(\omega\Rightarrow T\)
1.Con lắc lò xo gồm một vật nhỏ có khối lượng m gắn vào đầu một lò xo có độ cứng k và khối lượng không đáng kể.
Từ \(\Delta\)\(l_{0}.k\)\(=mg\)
\(T=2\)\(\pi\)\(\sqrt{\dfrac{m}{k}}\)\(=\dfrac{t}{N}(s)\)
\(f=\dfrac{1}{2π} \)\(\sqrt{\dfrac{k}{m}}\)\(=\dfrac{N}{t}(Hz)\)
\(\omega\)\(=\sqrt{\dfrac{k}{m}}=\)\(\dfrac{2π}{T}=2πf\)
2.
- Động năng của con lắc lò xo:
- Thế năng đàn hồi của con lắc lò:
- Trong con lắc lò xo nằm ngang x = ∆l nên:
- Cơ năng trong con lắc lò xo:
3.Ta có \(F=kx=1,92N\)
\(\omega\)=\(4\)\(\pi\) ;\(m=0,2(kg)\)
\(\Rightarrow\)\(k=m.\)\(\omega\).\(\omega\)=\(32(N/m)\)
\(\Rightarrow\)\(x=0,06\)
\(W_{t}=\dfrac{1}{2}.k.x^{2}=0,0576(J)\)
1.Con lắc lò xo là một hệ thống bao gồm 1 lò xo có độ cứng là k, tạm thời bỏ qua ảnh hưởng của khối lượng (điều kiện lý tưởng): một đầu cố định, một đầu gắn vật nặng có khối lượng m (bỏ qua sự ảnh hưởng của kích thước).
CT tính tần số góc:\(\omega=\sqrt{\dfrac{k}{m}}\)
CT tính chu kì:\(T=2\pi\sqrt{\dfrac{m}{k}}\)
CT tính tần số:\(f=\dfrac{1}{2\pi}\sqrt{\dfrac{k}{m}}\)
2.Biểu thức tính:
+ Động năng:\(W_đ=\dfrac{1}{2}mv^2=\dfrac{1}{2}mA^2sin^2\left(\omega t+\varphi\right)\)
+ Thế năng: \(W_t=\dfrac{1}{2}kx^2=\dfrac{1}{2}kA^2cos^2\left(\omega t+\varphi\right)\)
+ Cơ năng: \(W=W_đ+W_t\)