Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5}{4}+\left(2x-\dfrac{1}{2}\right)=\dfrac{5}{6}\\ =>2x-\dfrac{1}{2}=\dfrac{5}{6}-\dfrac{5}{4}\\ =>2x-\dfrac{1}{2}=\dfrac{10}{12}-\dfrac{15}{12}\\ =>2x-\dfrac{1}{2}=-\dfrac{5}{12}\\ =>2x=-\dfrac{5}{12}+\dfrac{1}{2}\\ =>2x=-\dfrac{5}{12}+\dfrac{6}{12}\\ =>2x=\dfrac{1}{12}\\ =>x=\dfrac{1}{12}:2\\ =>x=\dfrac{1}{12}\cdot\dfrac{1}{2}\\ =>x=\dfrac{1}{24}\)
__
\(\dfrac{3}{2}-\left(x+\dfrac{1}{4}\right)=\dfrac{5}{8}\\ =>x+\dfrac{1}{4}=\dfrac{3}{2}-\dfrac{5}{8}\\ =>x+\dfrac{1}{4}=\dfrac{12}{8}-\dfrac{5}{8}\\ =>x+\dfrac{1}{4}=\dfrac{7}{8}\\ =>x=\dfrac{7}{8}-\dfrac{1}{4}\\ =>x=\dfrac{7}{8}-\dfrac{2}{8}\\ =>x=\dfrac{5}{8}\)
__
\(\dfrac{x}{3}=\dfrac{12}{x}\\ =>x^2=3\cdot12\\ =>x^2=36\\ =>x^2=6^2\\ =>x=\pm6\)
Tìm x:
a) \(\dfrac{5}{4}+\left(2x-\dfrac{1}{2}\right)=\dfrac{5}{6}\)
\(=>2x-\dfrac{1}{2}=\dfrac{5}{6}-\dfrac{5}{4}\)
\(=>2x-\dfrac{1}{2}=\dfrac{-5}{12}\)
\(=>2x=\dfrac{-5}{12}+\dfrac{1}{2}\)
\(=>2x=\dfrac{1}{12}\)
\(=>x=\dfrac{1}{12}:2\)
\(=>x=\dfrac{1}{24}\)
b) \(\dfrac{3}{2}-\left(x+\dfrac{1}{4}\right)=\dfrac{5}{8}\)
\(=>x+\dfrac{1}{4}=\dfrac{3}{2}-\dfrac{5}{8}\)
\(=>x+\dfrac{1}{4}=\dfrac{7}{8}\)
\(=>x=\dfrac{7}{8}-\dfrac{1}{4}\)
\(=>x=\dfrac{5}{8}\)
c) \(\dfrac{x}{3}=\dfrac{12}{x}\)
Ta có: \(x.x=3.12\)
\(\Rightarrow x^2=36\)
Vậy x = 6 hoặc x = -6
Chúc bạn học tốt
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
Lời giải:
$\frac{2x}{3}-\frac{2}{y}=\frac{1}{3}$
$\frac{2xy-6}{3y}=\frac{1}{3}$
$\frac{2xy-6}{3y}=\frac{y}{3y}$
$\Rightarrow 2xy-6=y$
$\Rightarrow y(2x-1)=6$
$y=\frac{6}{2x-1}$
Vì $y$ nguyên nên $\frac{6}{2x-1}$ phải nguyên
$\Rightarrow 2x-1\in Ư(6)$
Mà $2x-1$ lẻ với mọi $x$ nguyên nên $2x-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow x\in\left\{1; 0; 2; -1\right\}$
Với $x=1$ thì $y=\frac{6}{2x-1}=6$
Với $x=0$ thì $y=\frac{6}{2x-1}=-6$
Với $x=2$ thì $y=\frac{6}{2x-1}=2$
Với $x=-1$ thì $y=\frac{6}{2x-1}=-2$
a, đk x khác 0
<=> x^2 = 16 <=> x = 4 ; x = -4 (tm)
b, <=> 36x +252 = -360 <=> x = -17
c. đk x khác -1
<=> (x+1)^2 = 16
TH1 : x + 1 = 4 <=> x = 3 (tm)
TH2 : x + 1 = -4 <=> x = -5 (tm)
d, đk x khác 1/2
<=> (2x-1)^2 = 81
TH1 : 2x - 1 = 9 <=> x = 5 (tm)
TH2 : 2x - 1 = -9 <=> x = -4 (tm)
a: \(\Leftrightarrow x^2=16\)
hay \(x\in\left\{4;-4\right\}\)
b: =>x+7/15=-2/3
=>x+7=-10
hay x=-17
c: \(\Leftrightarrow\left(x+1\right)^2=16\)
\(\Leftrightarrow x+1\in\left\{4;-4\right\}\)
hay \(x\in\left\{3;-5\right\}\)
Ngô Hải Nam ơi bn trả lời giúp mik ik
bài đó là bài 4^* tìm các số nguyên x để mỗi phân số sau đây là số nguyên
Giải:
a) \(\dfrac{12}{16}=\dfrac{-x}{4}=\dfrac{21}{y}=\dfrac{z}{80}\)
\(\Rightarrow x=\dfrac{12.-4}{16}=-3\)
\(\Rightarrow y=\dfrac{16.21}{12}=28\)
\(\Rightarrow z=\dfrac{12.80}{16}=60\)
b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)\) =0
\(\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\)
\(x.\left(\dfrac{1}{3}+\dfrac{2}{5}\right)\) \(=0+\dfrac{2}{5}\)
\(x.\dfrac{11}{15}\) \(=\dfrac{2}{5}\)
x \(=\dfrac{2}{5}:\dfrac{11}{15}\)
x \(=\dfrac{6}{11}\)
c) (2x-3)(6-2x)=0
⇒2x-3=0 hoặc 6-2x=0
x=3/2 hoặc x=3
d) \(\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-2}{3}-\dfrac{3}{2}\)
\(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-13}{6}\)
\(2x-5=\dfrac{-13}{6}:\dfrac{1}{3}\)
\(2x-5=\dfrac{-13}{2}\)
\(2x=\dfrac{-13}{2}+5\)
\(2x=\dfrac{-3}{2}\)
\(x=\dfrac{-3}{2}:2\)
\(x=\dfrac{-3}{4}\)
e) \(2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}\)
\(\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}:2\)
\(\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{1}{8}\) hoặc \(\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-1}{8}\)
\(x=\dfrac{11}{12}\) hoặc \(x=\dfrac{5}{12}\)