Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
4n - 5 \(⋮\)13
=> 4n - 5 + 13 \(⋮\)13
=> 4n + 8 \(⋮\)13
=> 4.(n+2)\(⋮\)13
=> n + 2 \(⋮\)13
=> n +2 = 13k ( k\(\in\)N*)
=> n = 13k - 2
vậy: n = 13k - 2 ( k\(\in\)N*)
b, 5n + 1 \(⋮\)7
=> 5n + 1 + 14 \(⋮\)7
=> 5n + 15 \(⋮\)7
=> 5. ( n+3) \(⋮\)7
=> n + 3 \(⋮\)7
=> n+3 = 7k ( k\(\in\)N*)
=> n = 7k - 3
vậy: n = 7k - 3 ( k\(\in\)N*)
c, 25n + 3 \(⋮\)53
phần c thì mk chịu. bạn tk mk nha. 2 phần kia đúng 100%
a, 4n-5 chia hết cho 13
=> 4n-5+13 chia hết cho 13
=> 4n+8 chia hết cho 13
=> 2(n+2) chia hết cho 13
Vì 2 không chia hết cho 13 nên n+2 chia hết cho 13
=> n+2 thuộc B(13)
=> n+2 = 13k (k thuộc N)
=> n = 13k - 2
Vậy n có dạng là 13k-2
b, 5n+1 chia hết cho 7
=> 5n+1+14 chia hết cho 7
=> 5n+15 chia hết cho 7
=> 5(n+3) chia hết cho 7
Vì 5 không chia hết cho 7 nên n+3 chia hết cho 7
=> n+3 thuộc B(7)
=> n+3 = 7k (k thuộc N)
=> n=7k-3
Vậy n có dạng 7k-3
c, 25n+3 chia hết cho 53
=> 25n+3-53 chia hết cho 53
=> 25n-50 chia hết cho 53
=> 25(n-2) chia hết cho 53
Vì 25 không chia hết cho 53 nên n-2 chia hết cho 53
=> n-2 thuộc B(53)
=> n-2=53k (k thuộc N)
=> n=53k+2
Vậy n có dạng là 53k+2
Ta có : 4n - 5 chia hết cho 13
=> 13 thuộc Ư(13) = {1;13}
Ta có bảng
Vậy n ko tồn tại