Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì mình không vẽ được hình nên các bạn vẽ hình của bạn nhé
đặt tên : tam giác ABC, AB= a , AC= b , GÓC BAC là \(\alpha\) , kẻ BH vuông góc với AC
tam giác ABH vuông tại H \(\Rightarrow\) \(\sin\alpha\) = \(\frac{BH}{AB}\) \(\Rightarrow\) BH = sin\(\alpha\).AB
có \(s_{ABC}\) = \(\frac{1}{2}BH.AC\)
MÀ BH = sin \(\alpha\) . AB \(\Rightarrow\) S \(_{ABC}\) =\(\frac{1}{2}sin\alpha.AB.AC\) = \(\frac{1}{2}a.b.sin\alpha\) \(\Rightarrow\)đpcm
Bài 1:
Ta có:
\(A=\sin ^6a+\cos ^6a+3\sin ^2a\cos ^2a\)
\(=(\sin ^2a)^3+(\cos ^2a)^3+3\sin ^2a\cos ^2a\)
\(=(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)+3\sin ^2a\cos ^2a\)
\(=\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a+3\sin ^2a\cos ^2a\)
\(=\sin ^4a+2\sin ^2a\cos ^2a+\cos ^4a\)
\(=(\sin ^2a+\cos ^2a)^2=1^2=1\)
Lời giải:
Xét tam giác $ABC$. Gọi cạnh $AB, AC$ là $a,b$ và góc \(\widehat{BAC}=\alpha\)
Kẻ đường cao $BH$ của tam giác $ABC$
Khi đó:
\(S=\frac{BH.AC}{2}\)
Mặt khác, theo công thức lượng giác:
\(\frac{BH}{AB}=\sin \widehat{BAC}=\sin \alpha\Rightarrow BH=\sin \alpha.AB\)
Do đó: \(S=\frac{BH.AC}{2}=\frac{\sin \alpha.AB.AC}{2}=\frac{\sin \alpha.a.b}{2}\) (đpcm)
Có hình vẽ : A B C D H K o
Dễ thấy SABCD = \(\frac{1}{2}\left(AH+CK\right).BD\)
mà lại có \(AH=AO.sin\alpha\) ; \(CK=OC.sin\alpha\)
=> SABCD = \(\frac{1}{2}\sin\alpha.AC.BD\)
Khi 2 đường chéo vuông góc với nhau thì
\(H\equiv O\equiv K\Rightarrow AH=AO=CK\)
hay \(sin\alpha=1\)
Khi đó \(S_{ABCD}=\frac{1}{2}mn\)(đpcm)
Lời giải:
Xét tam giác $ABC$ có góc $\widehat{A}=\alpha$
$AB=a; AC=b$
Kẻ đường cao $BH$ ($H\in AC$)
Ta có: $S_{ABC}=\frac{BH.AC}{2}$
Mà: $\frac{BH}{AB}=\sin A=\sin \alpha$
$\Rightarrow BH=AB.\sin \alpha$
$\Rightarrow S_{ABC}=\frac{AB.\sin \alpha .AC}{2}=\frac{1}{2}ab\sin \alpha$
Ta có đpcm.
Lời giải:
Xét tam giác $ABC$ có $AB=a;AC=b$ và góc $BAC$ bằng \(\alpha\) là góc nhọn.
Từ $B$ kẻ \(BH\perp AC (H\in AC)\)
Khi đó: \(S_{ABC}=\frac{BH.AC}{2}\) \((1)\)
Xét tam giác vuông tại $H$ là $BAH$ có: \(\sin \alpha=\frac{BH}{AB}\Rightarrow BH=\sin \alpha .AB\) \((2)\)
Từ \((1),(2)\Rightarrow S_{ABC}=\frac{AB.AC.\sin \alpha}{2}=\frac{ab\sin \alpha}{2}\)
Ta có đpcm.
cảm ơn ạ