Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n là một số chẵn thì => n+3 là một số lẻ
Mà chẵn x lẻ = chẵn => đpcm
Nếu n là số lẻ thì => n+3 là một số chẵn
Mà lẻ x chẵn = chẵn => đpcm
Vậy tích n.(n+3) luôn là số chẵn với mọi số tự nhiên với n
giả sử n lẻ=> n+3 lẻ=> n(n+3) chẵn, Vn thuộc N
giả sử n chẵn=> n(n+3) chẵn(bởi vì chẵn nhân vs số nào cx chẵn
vậy...
a) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
b) 71x1y chia hết cho 45
=> 71x1y chia hết cho 9; 5
Để 71x1y chia hết cho 5 thì tận cùng là 0 hoặc 5
=> y ∈ {0;5}
+) Xét số 71x10
Để 71x10 chia hết cho 9 thì (7 + 1 + x + 1 + 0) chia hết cho 9
Hay (9 + x) chia hết cho 9
=> x ∈ {0;9}
+) Xét số 71x15
Để 71x15 chia hết cho 9 thì (7 + 1 + x + 1 + 5) chia hết cho 9
Hay (14 + x) chia hết cho 9
=> x = 4
Vậy y ∈ {0;5}
x ∈ {0;4;9}
Ta xét hai trường hợp
Nếu n chia hết cho 2 \(\Rightarrow n=2k\left(k\in n\right)\)
\(\Rightarrow\left(n+3\right)\left(n+6\right)=\left(2k+3\right)\left(2k+6\right)\)
\(=2k.2k+2k.6+3.2k+3.6\)
\(=2k^2+2k.6+2k.3+2.9\)
\(=2\left(k^2+6k+3k+9\right)⋮2\)
Nếu n chia cho 2 dư 1 \(\Rightarrow n=2k+1\)
\(\Rightarrow\left(2k+1+3\right)\left(2k+1+6\right)=\left(2k+4\right)\left(2k+7\right)\)
\(=2k.2k+2k.7+2k.4+4.7\)
\(=2k^2+2k.7+2k.4+2.14=2\left(k^2+7k+4k+14\right)⋮2\)
Vậy \(\left(n+3\right)\left(n+6\right)⋮2\left(n\in N\right)\)
1.
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
đúng cái nhe bạn
2.
Gọi d là ƯCLN (16n+3; 12n+2)
=> 16n+3 chia hết cho d; 12n+2 chia hết cho d
Nên 3. (16n+3) chia hết cho d; 4. (12n+2) chia hết cho d
=> 48n+9 chia hết cho d; 48n+8 chia hết cho d
=> (48n+9)-(48n+8) chia hết cho d
=> 1 chia hết cho d
=> d \(\in\) {1; -1}
Vậy phân số \(\frac{16n+3}{12n+2}\) là phân số tối giản.
Xét ta có 2 trường hợp :
TH1 : Với k là số chẵn ( 2k với k thuộc N ) ta có :
2k .( 2k+5)
= 4 . k2 + 10 . k
= 2.(2 . k2 + 5k ) [ chia hết cho 2 ]
TH2 : Với k là số lẻ ( 2k + 1 với k thuộc N ) ta có :
( 2k + 1 ) . ( 2k + 1 + 5 )
= 2k . ( 2k + 6 ) + 2k + 6
= 4 k2 + 12k + 2k + 6
= 2 . ( 2 k2 + 6k + k + 3 ) [ chia hết cho 2 ]
n = 2k => (2k+2)(2k+3) = 2(k+1) . (2k+3) nên chia hết cho 2
n = 2k + 1 = (2k + 1 +2) ( 2k + 1 + 3) = (2k+3) (2k +4) = (2k+3) 2(k+2) nên chia hết cho 2
Vậy vói n là mọi số tự nhiên thì (n+2)(n+3) đều chia hết cho 2
Vì n là STN => (n+2) và (n+3) là hai số tự nhiên liên tiếp => 1 trong hai số là số chẵn => tích (n+2)(n+3) là số chẵn