Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a ,Ta có VT=a-b-c+d=(a+d)-(b+c)=VP(đpcm)
b ta có VT=a+b-a+b+a-c-a-c=2b-2c=2(b-c)=VP (đpcm)
c Ta có VT=b+b-c+a-b+c-b-c+a-a+b+c=b+a+Vp(đpcm)
2,=>(-x-1)(-x+1).3.(-x+5)=0=>x thuộc -1;1;5
b=> x(-2-5)=-49=>-7x=-49=>x=7
c=> 3(x2-9)(x-7)=0=>3(x-3)(x+3)(x-7)=0=>x thuộc -3;3;7
d=>-4(x+5)(9-2x)=0=>x thuộc -5;4,5
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
Phùng Tuệ Minh Z+ là tập hợp Z nhưng ko chúa số âm , ukm
Gọi (7n+10;5n+7)=d
\(\Rightarrow\left\{{}\begin{matrix}7n+10⋮d\\5n+7⋮d\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}35n+50⋮d\\35n+49⋮d\end{matrix}\right.\\ \Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\Rightarrowđpcm\)
a) Theo đề bài ta có:
64a = 80b = 96c ; mà a,b,c nhỏ nhất
\(\Rightarrow\) 64a = 80b = 96c = BCNN(64;80;96)
64 = 26
80 = 24 . 5
96 = 25 . 3
\(\Rightarrow\) BCNN(64;80;96) = 26 . 3 . 5 = 960
\(\Rightarrow\) 64a = 960 \(\Rightarrow\) a = 960 : 64 = 15
80b = 960 \(\Rightarrow\) b = 960 : 80 = 12
96c = 960 \(\Rightarrow\) c = 960 : 96 = 10
Vậy a = 15 ; b = 12 ; c = 10
b) Gọi ƯCLN(7n+10;5n+7) là d ( d \(\in\) N* )
Ta có:
\(\left\{{}\begin{matrix}\left(7n+10\right)⋮d\\\left(5n+7\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(35n+50\right)⋮d\\\left(35n+49\right)⋮d\end{matrix}\right.\)
\(\Rightarrow\) \(\left(35n+50\right)-\left(35n+49\right)⋮d\)
\(\Rightarrow\left(35n+50-35n-49\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy (7n+10) và (5n+7) là hai số nguyên tố cùng nhau ( đpcm )
a) 2n+1 và 7n+2
Gọi d là ƯCLN của 2n+1 và 7n+2
Vì 2n+1 chia hết cho d,7n+2 chia hết cho d
TC: 7.(2n+1) chia hết cho d , 2.(7n+2) chia hết cho d
14n+7 chia hết cho d , 14n+14 chia hết cho d
Nên (14n+14)-(14n+7) chia hết cho d
14n+14-14n+7 chia hết cho d
7 chia hết cho d
d=7
Kết luận
Các câu khác tương tự nhé
1,Tìm x
11-(4x-3)=3(-2-x)
=>11-4x+3=-6-3x
=>11+3=-6-3x+4x
=>11+3+6=-3x+4x
=>20=x
=>x=20
2. 7n = 49
=> n = 49 : 7
=> n = 7
a(b - c - d) - a(b + c - d)
= ab - ac - ad - ab - ac + ad
= -2ac
=> sai đề ak bn -_-