K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

Câu 1:                      Giải

Ta có :\(\hept{\begin{cases}3^{100}=3^{4.25}=\overline{...1}\\19^{990}=19^{998+2}=19^{247.4}.19^2=\overline{...1}.\overline{...1}=\overline{...1}\end{cases}}\)

\(\Rightarrow3^{100}+19^{990}=\left(...1\right)+\left(...1\right)=\left(...2\right)⋮2\left(đpcm\right)\)

Câu 2 :         Giải

Đặt \(d=\left(12n+1,20n+2\right)\)

\(\Rightarrow\hept{\begin{cases}\left(12n+1\right)⋮d\\\left(30n+2\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left[5\left(12n+1\right)\right]⋮d\\\left[2\left(30n+2\right)\right]⋮d\end{cases}}\)

\(\Leftrightarrow\left[5\left(12n+1\right)-2\left(30n+2\right)\right]⋮d\)

hay \(\left[60n+5-60-4\right]⋮d\)

\(\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\) tối giản với mọi n \(\inℤ\)

9 tháng 3 2019

Ta có:3,7,9 nhân lên lũy thừa 4n sẽ có chữ số tận cùng =1

1.

3100+19990=...1+19988.192

                =...1+...1. (...1)

                = ...1+...1

                =...2  chia hết cho 2(số có chữ số tận cùng là chữ số chẵn chia hết cho 2)

2.

Gọi ƯC(12n+1,30n+2)=d

ta có:    12n+1 chia hết cho d=>5(12n+1) chia hết cho d=>60n+5 chia hết cho d                       (1)

             30n+2 chia hết cho d=>2(30n+2) chia hết cho d=>60n+4 chia hết cho d                       (2)

Từ (1) và (2),suy ra:     60n+5-(60n+4) chia hết cho d

                                  60n+5-60n-4 chia hết cho d

                                         5-4       chia hết cho d

                                          1          chia hết cho d  

Ư(1)={1;-1}

=>bất cứ số nguyên n nào cx thích hợp để 12n+1/30n+2 là P/S tối giản!

22 tháng 5 2022

giúp tui điiiiikhocroi

22 tháng 5 2022

Hmm

30 tháng 1 2021

Gọi ƯCLN ( 12n+1,30n+2 ) = d

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow\)\(\left[\left(60n+5\right)-60n-4\right]\)\(⋮d\)

\(\Rightarrow\)1\(⋮d\)

\(\Rightarrow\)d = 1

Vậy phân số\(\frac{12n+1}{30n+2}\)tối giản với mọi n

31 tháng 1 2021

Đặt \(12n+1;30n+2=d\)

\(12n+1⋮d\Rightarrow60n+5⋮d\)

\(30n+2\Rightarrow60n+4⋮d\)

Suy ra : \(60n+5-60n-4⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

7 tháng 5 2018

suy ra 11 chia hết cho n-4(n-4+11 chia hết cho n-4)

n-4 thuộc ước của 11={+-1;+-11) suy ra N thuộc{5;3;-7;15}

7 tháng 5 2018

N+7phần n-4 nha mọi người .

12 tháng 2 2022

Bạn nào giúp mình với

\(A=\frac{12n+1}{30n+2}\)

Gọi d là ƯC ( 12n+1 ; 30n+2 )

Ta có :

\(12n+1⋮d\)\(30n+2⋮d\)

\(\Rightarrow12n+1-30n+2⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+5-50n+4⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d\in\pm1\)

Kết luận : Vậy A là phân số tối giản với moin số nguyên n

19 tháng 4 2021

Gọi d là ước chung lớn nhất của 12n+1 và 30n+2

=>(12n+1)chia hết cho d

=>(30n+2) chia hết cho d

=>5(12n+1) - 2(30n+2) chia hết cho d

=>(60n+5) - (60n+4) chia hết cho d

=>              1 chia hết cho d

=>                    1=d

Vậy \(\frac{12n+1}{30n+2}\)tối giản với mọi P/s

6 tháng 11 2019

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

12 tháng 3 2022

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

Gọi \(d\inƯC\left(12n+1;30n+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Leftrightarrow60n+5-60n-4⋮d\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)

hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)

19 tháng 3 2021

Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)

⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d

⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d

⇔1⋮d⇔1⋮d

⇔d∈Ư(1)⇔d∈Ư(1)

⇔d∈{1;−1}⇔d∈{1;−1}

⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1

vậy A=12n+130n+2A=12n+130n+2 là phân số tối giản

19 tháng 1 2018

a ) S = \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)

Nên S \(⋮33\)\(33⋮33\)

Phần b ) bạn tự làm nhé