Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1/ phân tích nhân tử là xong nên không giải.
Câu 2/ Ta có:
\(Q=\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\ge\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{\left(2\sqrt{b}-5\right)\left(2\sqrt{c}-5\right)\left(2\sqrt{a}-5\right)}}\)
\(=\dfrac{3\sqrt[3]{125.abc}}{\sqrt[3]{\left(2\sqrt{b}-5\right).5.\left(2\sqrt{c}-5\right).5.\left(2\sqrt{a}-5\right).5}}\)
\(\ge\dfrac{3\sqrt[3]{125abc}}{\sqrt[3]{\dfrac{\left(2\sqrt{a}-5+5\right)^2}{4}.\dfrac{\left(2\sqrt{b}-5+5\right)^2}{4}.\dfrac{\left(2\sqrt{c}-5+5\right)^2}{4}}}\) (Vì \(a,b,c>\dfrac{25}{4}\))
\(=\dfrac{3\sqrt[3]{125abc}}{\sqrt[3]{abc}}=15\)
Dấu = xảy ra khi \(a=b=c=25\)
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
Câu 1:
a/ Biểu thức không tồn tại GTNN.
Bạn cứ thử với vài giá trị âm có trị tuyệt đối lớn, ví dụ \(a=-10^3\) và \(b=-\frac{1}{10^3}\) sẽ thấy
b/
\(x^3+3x^2+3x+1+y^3+3y^2+3y+1+x+y+2=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right]+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1-\frac{y+1}{2}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\right]=0\)
\(\Rightarrow x+y=-2\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)
\(\Rightarrow-x+\left(-y\right)=2\)
\(M=\frac{1}{x}+\frac{1}{y}=-\left(\frac{1}{-x}+\frac{1}{-y}\right)\le-\frac{4}{-x+\left(-y\right)}=-\frac{4}{2}=-2\)
\(\Rightarrow M_{max}=-2\) khi \(x=y=-1\)
1c/
\(T=\sum\frac{a}{2a+a+b+c}=\frac{1}{25}\sum\frac{a\left(2+3\right)^2}{2a+a+b+c}\le\frac{1}{25}\sum\left(\frac{4a}{2a}+\frac{9a}{a+b+c}\right)\)
\(\Rightarrow T\le\frac{1}{25}\left(6+\frac{9\left(a+b+c\right)}{a+b+c}\right)=\frac{15}{25}=\frac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c\)
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)
c) Có \(P=\frac{ax+b}{x^2+1}=-1+\frac{x^2+ax+b+1}{x^2+1}\);
\(P=\frac{ax+b}{x^2+1}=4-\frac{4x^2-ax-b+4}{x^2+1}\)
Để Min P = 1 và Max P = 4 thì
\(\hept{\begin{cases}x^2+ax+b+1=\left(x+c\right)^2\\4x^2-ax-b+4=\left(2x+d\right)^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\left(a-2c\right)+\left(b+1-c^2\right)=0\left(1\right)\\x\left(-a-4d\right)+\left(-b+4-d^2\right)=0\left(2\right)\end{cases}}\)
(1) = 0 khi \(\hept{\begin{cases}a=2c\\b=c^2-1\end{cases}}\)(3)
(2) = 0 khi \(\hept{\begin{cases}a=-4d\\b=4-d^2\end{cases}}\)(4)
Từ (3) (4) => d = 1 ; c = -2 ; b = 3 ; a = -4
Vậy \(P=\frac{-4x+3}{x^2+1}\)
ĐK \(x\ge y\)
Đặt \(\sqrt{x+y}=a;\sqrt{x-y}=b\left(a;b\ge0\right)\)
HPT <=> \(\hept{\begin{cases}a^4+b^4=82\\a-2b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2b+1\right)^4+b^4=82\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}17b^4+32b^3+24b^2+8b-81=0\\a=2b+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}17b^4-17b^3+49^3-49b^2+73b^2-73b+81b-81=0\\a=2b+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(b-1\right)\left(17b^3+49b^2+73b+81\right)=0\left(1\right)\\a=2b+1\end{cases}}\)
Giải (1) ; kết hợp điều kiện => b = 1
=> Hệ lúc đó trở thành \(\hept{\begin{cases}b=1\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+y}=3\\\sqrt{x-y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=10\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)
Vậy hệ có 1 nghiệm duy nhất (x;y) = (5;4)
Do \(a,b,c>\frac{25}{4}\)(gt) nên suy ra \(2\sqrt{a}-5>0,2\sqrt{b}-5>0,2\sqrt{c}-5>0\)
Áp dụng bđt cô - si cho 2 số không âm, ta được:
\(\frac{a}{2\sqrt{b}-5}+2\sqrt{b}-5\ge2\sqrt{a}\)
\(\frac{b}{2\sqrt{c}-5}+2\sqrt{c}-5\ge2\sqrt{b}\)
\(\frac{c}{2\sqrt{a}-5}+2\sqrt{a}-5\ge2\sqrt{c}\)
Cộng từng vế của các bđt trên, ta được:
\(\text{ Σ}_{cyc}\frac{a}{2\sqrt{b}-5}+\text{ Σ}_{cyc}\left(2\sqrt{b}\right)-15\ge\text{ Σ}_{cyc}\left(2\sqrt{a}\right)\)
Suy ra \(\text{}\text{}\text{Σ}_{cyc}\frac{a}{2\sqrt{b}-5}\ge15\)
hay \(Q\ge15\)
(Dấu "="\(\Leftrightarrow a=b=c=25\))