K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AH
Akai Haruma
Giáo viên
25 tháng 5 2018
Lời giải:
a) Ta thấy với $n$ là số nguyên dương thì $n^2$ chia $4$ có thể dư $0$ hoặc $1$
Mà \(2014\equiv 2\pmod 4\)
Do đó \(n^2+2014\equiv 2,3\pmod 4\)
Mà một số chính phương chia $4$ chỉ có thể dư $0,1$, nên $n^2+2014$ không thể là số chính phương.
b)
Áp dụng BĐT Bunhiacopxky:
\((a^5+b^5)(a+b)\geq (a^3+b^3)^2\)
Mà \(a^5+b^5=a^3+b^3\Rightarrow (a^5+b^5)(a+b)\geq (a^5+b^5)(a^3+b^3)\)
\(\Rightarrow a+b\geq a^3+b^3\)
\(\Leftrightarrow (a+b)[1-(a^2-ab+b^2)]\geq 0\)
\(\Rightarrow 1-(a^2-ab+b^2)\geq 0\)
\(\Rightarrow 1+ab\geq a^2+b^2\) (ta có đpcm)
Dấu bằng xảy ra khi \(a=b=1\)
VD
0
Ai giúp em với ạ.