K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Lời giải:

a) Ta thấy với $n$ là số nguyên dương thì $n^2$ chia $4$ có thể dư $0$ hoặc $1$

\(2014\equiv 2\pmod 4\)

Do đó \(n^2+2014\equiv 2,3\pmod 4\)

Mà một số chính phương chia $4$ chỉ có thể dư $0,1$, nên $n^2+2014$ không thể là số chính phương.

b)

Áp dụng BĐT Bunhiacopxky:

\((a^5+b^5)(a+b)\geq (a^3+b^3)^2\)

\(a^5+b^5=a^3+b^3\Rightarrow (a^5+b^5)(a+b)\geq (a^5+b^5)(a^3+b^3)\)

\(\Rightarrow a+b\geq a^3+b^3\)

\(\Leftrightarrow (a+b)[1-(a^2-ab+b^2)]\geq 0\)

\(\Rightarrow 1-(a^2-ab+b^2)\geq 0\)

\(\Rightarrow 1+ab\geq a^2+b^2\) (ta có đpcm)

Dấu bằng xảy ra khi \(a=b=1\)

24 tháng 2 2017

câu 1 mình chưa nghĩ, nhưng câu 2 bạn bình phương 2 vees lên nhé

12 tháng 4 2018

vay cng ko biet nua

 

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0