Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Restore : a;b;c không âm thỏa \(a^2+b^2+c^2=1\)
Tìm Min & Max của \(M=\left(a+b+c\right)^3+a\left(2bc-1\right)+b\left(2ac-1\right)+c\left(2ab-1\right)\)
Bài 4: Tương đương giống hôm nọ thôi : V
Bài 5 : Thiếu ĐK thì vứt luôn : V
Bài 7: Tương đương
( Hoặc có thể AM-GM khử căn , sau đó đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\) rồi áp dụng bổ đề vasile)
Bài 8 : Đây là 1 dạng của BĐT hoán vị
@Ace Legona @Akai Haruma @Hung nguyen @Hà Nam Phan Đình @Neet
Mấy cái dấu "=" anh tự xét.
Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)
a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)
b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
5.
(x^2 -1)(x^2 +9) <0
(x+3)(x+1)(x-1)(x-3)<0
x \(\in\)(-3;-1)U(1;3)
a)\(x -1 >5 ⇔ x > 1 ⇒ x^4 > x^3 > x^2 > x > 1 \)
\(⇒ 5x^4 > x^4 + x^3 + x^2 + x + 1 > 5 \)
\(⇒ 5x^4 (x-1) > (x-1)( x^4 + x^3 + x^2 + x + 1) = x^5 -1 > 5 (x-1) \)
b)\(x^5 + y^5 – x^4y – xy^4 = (x + y)(x^4 – x^3y + x^2y^2 – xy^3 + y^4) – xy(x^3 + y^3) \)
\(= (x + y) [( x^4 – x^3y+ x^2y^2 – xy^3 + y^4) – xy(x^2 – xy + y^2)] \)
\(= (x + y) [(x^4+2x^2y^2+y^4) - 2xy(x^2+y^2)] \)
\(= (x + y) (x - y)^2(x^2 + y^2) ≥ 0 \)
c)\(\sqrt {4a + 1} + \sqrt {4b + 1} + \sqrt {4c + 1} )^2\)
\(= 4(a + b + c) + 3 + 2\sqrt {4a + 1} \sqrt {4b + 1} + 2\sqrt {4a + 1} \sqrt {4c + 1} + 2\sqrt {4b + 1} \sqrt {4c + 1} \)
\( \le 4(a + b + c) + 3 + (4a + 1) + (4b + 1) + (4a + 1) + (4c + 1) + (4b + 1) + (4c + 1) \)
\(\le 12(a + b + c) + 9 \le 21 \le 25\)