Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{3n-2}{4n-3}\)
Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) là d .
\(\Rightarrow\) 3n - 2 ⋮ d
4n - 3 ⋮ d
\(\Rightarrow\) 4n - 3 + 3n - 2 ⋮ d
\(\Rightarrow\)( 12n - 9 )+ ( 12n - 8 ) ⋮ d
\(\Rightarrow\) ( 12n - 12n ) + ( 9 - 8 ) ⋮ d
\(\Rightarrow\) 1 ⋮ d
\(\Rightarrow\) d = 1 .
\(\Rightarrow\) 4n - 3 và 3n - 2 là hai số nguyên tố cùng nhau .
Vậy \(\frac{3n-2}{4n-3}\) là phân số tối giản .
b, \(\frac{4n+1}{6n+1}\)
Gọi ƯCLN ( 4n + 1 ; 6n + 1 ) là d .
\(\Rightarrow\) 4n + 1 ⋮ d
6n + 1 ⋮ d
\(\Rightarrow\) 4n + 1 - 6n + 1 ⋮ d
\(\Rightarrow\) ( 12n + 3 ) - ( 12n + 2 ) ⋮ d.
.\(\Rightarrow\) ( 12n - 12n ) + ( 3 - 2 ) ⋮ d
\(\Rightarrow\) 1 ⋮ d
\(\Rightarrow\) d = 1
\(\Rightarrow\) 4n + 1 và 6n + 1 là hai số nguyên tố cùng nhau .
Vậy \(\frac{4n+1}{6n+1}\) là phân số tối giản .
:)
Chúc bạn học tốt !
a) Để phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản
=> ƯCLN ( 3n - 2 ; 4n - 3 ) = 1
Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) = d
=> 3n - 2 \(⋮\)d và 4n - 3 \(⋮\)d ( 1 )
Từ ( 1 )
=> 4 . ( 3n - 2 ) \(⋮\)d và 3 . ( 4n - 3 ) \(⋮\)d
=> 12n - 8 \(⋮\)d và 12n - 9 \(⋮\)d ( 2 )
Từ ( 2 )
=> ( 12n - 9 ) - ( 12n - 8 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư ( 1 )
=> d = 1
=> Phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản với mọi n \(\in\)\(ℕ^∗\)
Bạn chọn vào câu tương tự của bạn trên OLM sẽ có bài tham khảo nha
=))) Mong bạn hiểu
Mik chưa bt làm nên cho bn coi bài của ngta =))
a) Gọi (3n-2,4n-3) = d
=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\)=>\(\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
=>\(\left(12n-8\right)-\left(12n-9\right)⋮d\)
=>\(1⋮d\)
=>\(d=1\)=>\(\frac{3n-2}{4n-3}\)là phân số tối giản
b) Gọi (4n+1,6n+1) = d
=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)
=> \(\left(12n+3\right)-\left(12n+2\right)⋮d\)
=> \(1⋮d\)
=> \(d=1\)
=> \(\frac{4n+1}{6n+1}\)là phân số tối giản
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)
ta có n4+3n2+1=(n3+2n)n+n2+1
n3+2n=(n2+1)n+n
n2+1=n.n+1
n=1.n
vậy ucln(n4+3n2+1, n3+2n)=1(đpcm)
trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm
\(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n + 1, 2n + 3) là a
Ta có:
n + 1\(⋮\)a
\(\Rightarrow\)2(n + 1)\(⋮\)a
\(\Leftrightarrow\)2n + 2\(⋮\)a
2n + 3\(⋮\)a
\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a
\(\Rightarrow\)1\(⋮\)a
\(\Rightarrow\)a = 1
\(\frac{2n+1}{3n+2}\)
Gọi ƯCLN(2n + 1, 3n + 2) là b
Ta có:
2n + 1\(⋮\)b
\(\Rightarrow\)3.(2n + 1)\(⋮\)b
\(\Leftrightarrow\)6n + 3\(⋮\)b (1)
3n + 2\(⋮\)b
\(\Rightarrow\)2.(3n + 2)\(⋮\)b
\(\Leftrightarrow\)6n + 4\(⋮\)b (2)
Từ (1), (2) ta có:
(6n + 4) - (6n + 3)\(⋮\)b
\(\Leftrightarrow\)1\(⋮\)b
\(\Rightarrow\)b = 1
Vậy ƯCLN(2n + 1, 3n + 2) là 1
\(\Rightarrow\)Phân số tối giản