Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác \(BKC\)vuông tại \(K\)có \(M\)là trung điểm của cạnh huyền \(BC\)nên \(KM=\frac{1}{2}BC\).
Tương tự ta cũng có \(HM=\frac{1}{2}BC\)
Suy ra \(KM=HM\)
\(\Rightarrow\Delta MKH\)cân tại \(M\).
Kẻ \(MN\)vuông góc với \(DE\).
Suy ra \(MN//BD//CE\)mà \(M\)là trung điểm của \(BC\)nên \(MN\)là đường trung bình của hình thang \(BDEC\).
suy ra \(N\)là trung điểm của \(DE\Rightarrow DN=NE\)(1).
Mà tam giác \(MKH\)cân tại \(M\)nên \(MN\)là đường cao đồng thời cũng là đường trung tuyến suy ra \(KN=HN\)(2)
(1) (2) suy ra \(DN-KN=EN-HN\Leftrightarrow DK=HE\).
Ta có đpcm.
gọi O là tr.điểm BC,I là tr.điểm DE
tam giác BEC có O là tr.điểm DE nên OE là trung tuyến ứng với cạnh huyền BC
=>OE=OB=OC(=1/2BC)
CMTT có OD=OB=OC(=1/2BC)
=>OE=OD=>tam giác ODE cân tại O
tam giác ODE cân ở O có OI là trung tuyến (I là tr.điểm DE) nên OI cũng là đg cao
=>OI _|_ ED hay OI _|_ HK
Mà BH _|_ HK , CK _|_ HK
=>OI//BH//CK => BCKH là hình thang
Dễ CM I là tr.điểm HK => IH=IK
Có IE+EH=IH , ID+DK=IK ,mà IH=IK,IE=ID
=>EH=DK
Tam giác ABC cân tại A => góc ABC = ACB => tam giác BEC = CDB (cạnh huyền - góc nhọn )
=> BE = CD; Mà AB = AC => \(\frac{BE}{AB}=\frac{CD}{AC}\). Theo ĐL Ta - let => DE // BC
=> HK // BC Mà CK // BH (vì cùng vuông góc với DE )
=> Tứ giác BCKH là hbh có: góc BHK vuông => BCKH là hcn
Gọi M là trung điểm của BC, dễ dàng chứng minh được tam giác MDE cân ở đỉnh M.
Gọi I là trung điểm của DE thìgiacsvuoong góc DE, suy ra MI // BH //CE. MI là đường trung bình của hình thang BHKC, ta có IH = IK.
Từ đó suy ra IH- IE = IK - ID.
do đó HE = KD.