Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Đề ko rõ, coi lại
b) \(75^{20}=45^{10}.5^{30}\)
\(\Leftrightarrow\left(75^2\right)^{10}=45^{10}.\left(5^3\right)^{10}\)
\(\Leftrightarrow5625^{10}=45^{10}.125^{10}\)
\(\Leftrightarrow5625^{10}=\left(45.125\right)^{10}\)
\(\Leftrightarrow5625^{10}=5625^{10}\)
\(\Rightarrow75^{20}=45^{10}.5^{30}\left(đpcm\right)\)
Bài 2:
a) \(\frac{x}{-4}=\frac{-3}{5}\)
\(\Rightarrow x.5=-4.\left(-3\right)\)
\(\Rightarrow x.5=12\)
\(\Rightarrow x=\frac{12}{5}=2,4\)
b) c) d) Làm tương tự câu a. Bn tự lm cho nhớ
e) \(30.5x=4.12\)
\(\Rightarrow150x=48\)
\(\Rightarrow x=\frac{48}{150}=0,32\)
f) g) Làm tương tự câu e. Bn tự lm cho nhớ
b)
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-1}.\)
+ Thay \(x=\frac{16}{9}\) vào B ta được:
\(B=\frac{\sqrt{\frac{16}{9}}+1}{\sqrt{\frac{16}{9}}-1}\)
\(B=\frac{\frac{4}{3}+1}{\frac{4}{3}-1}\)
\(B=\frac{\frac{7}{3}}{\frac{1}{3}}\)
\(B=7.\)
+ Thay \(x=\frac{25}{9}\) vào B ta được:
\(B=\frac{\sqrt{\frac{25}{9}}+1}{\sqrt{\frac{25}{9}}-1}\)
\(B=\frac{\frac{5}{3}+1}{\frac{5}{3}-1}\)
\(B=\frac{\frac{8}{3}}{\frac{2}{3}}\)
\(B=4.\)
Vậy với \(x=\frac{16}{9}\) và \(x=\frac{25}{9}\) thì B có giá trị là 1 số nguyên (đpcm).
e)
Chúc bạn học tốt!
a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)
\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)
\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)
\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)
\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)
Vậy \(a=-27;b=-44;c=-53\)
b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)
Vậy \(a=72;b=180;c=240\)
a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)
=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)
b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
=> a = 72, b=180, c=240