Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a)A= \(6x^2\)\(-11x+3\)
<=>A=\(6x^2\)\(-2x-9x+3\)
<=>A=(\(6x^2\)\(-2x\))-\(\left(9x-3\right)\)
=>A=\(2x\left(3x-1\right)\)\(-3\left(3x+1\right)\)
<=>A=\(2x\left(3x-1\right)+3\left(3x-1\right)\)
=>A=(3x-1)(2x+3)
a) \(x^3-2x^2+x=x\left(x^2-2x+1\right)=x\left(x-1\right)^2\)
b) Đa thức không thể phân tích thành nhân tử.
c)\(x^4+x^2+1=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
d) \(2x^2+7x+3=2x^2+6x+x+3\)
\(=2x\left(x+3\right)+\left(x+3\right)=\left(x+3\right)\left(2x+1\right)=2\left(x+3\right)\left(x+\frac{1}{2}\right)\)
e) \(4x^2y^2-\left(x^2y^2-1\right)^2=\left(2xy\right)^2-\left(x^2y^2-1\right)^2\)
\(=\left(2xy-x^2y^2+1\right)\left(2xy+x^2y^2-1\right)\)
g) Mình nghi ngờ đề sai vì xuất hiện bậc 8 nhưng thôi vẫn làm:
\(x^4+2x^8-6x-9\)
\(=\left(2x^8+2x^7\right)-\left(2x^7+2x^6\right)+\left(2x^6+2x^5\right)-\left(2x^5+2x^4\right)+\left(3x^4+3x^3\right)-\left(3x^3+3x^2\right)+\left(3x^2-6x-9\right)\)
\(=\left(x+1\right)\left(2x^7-2x^6+2x^5-2x^4+3x^3-3x^2+3x-9\right)\)
(chỗ này bạn nhóm nhân tử chung ở mỗi cái ngoặc rồi gộp lại thôi chớ nó dài quá mình ko làm chi tiết đc)
h) \(\left(xy+4\right)^4-\left(2x+xy\right)^2=\left[\left(xy+4\right)^2-\left(2x+xy\right)\right]\left[\left(xy+4\right)^2+2x+xy\right]\)
\(=\left(x^2y^2+7xy+16-2x\right)\left(x^2y^2+9xy+16+2x\right)\)
m) \(8\left(x^2-6yz-9y^2-z^2\right)=8\left[x^2-\left(9y^2+2.3y.z+z^2\right)\right]\)
\(=8\left[x^2-\left(3y+z\right)^2\right]=8\left(x-3y-z\right)\left(x+3y+z\right)\)
Is that true? Bạn thử check lại câu g chỗ đoạn tách nhé, nhiều quá nên có khi nhầm:)
Bài 3:
a) ta có: \(A=x^2+4x+9\)
\(=x^2+4x+4+5=\left(x+2\right)^2+5\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2
b) Ta có: \(B=2x^2-20x+53\)
\(=2\left(x^2-10x+\frac{53}{2}\right)\)
\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)
\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)
\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)
\(=2\left(x-5\right)^2+3\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5
c) Ta có : \(M=1+6x-x^2\)
\(=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3
Bài 2:
a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y+x-y\right)\)
\(=\left(x+y\right).2x\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
Chúc bạn học tốt!
b, \(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12\)
\(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x^3+3x^2+8x+12\right)\left(x-1\right)\)
\(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\left(x-1\right)\)
\(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
c, \(x^3+3x^2-4=\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(2x+4\right)\)
\(=x^2\left(x+2\right)+x\left(x+2\right)-2\left(x+2\right)\)
= \(\left(x^2+x-2\right)\left(x+2\right)\)
a)\(x^5+x^4+1=x^5-\left(-x^3+x^3\right)+x^4+\left(x^2-x^2\right)+\left(x-x\right)+1\)
\(=x^5-x^3+x^2+x^4-x^2+x+x^3-x+1\)
\(=x^2\left(x^3-x+1\right)+x\left(x^3-x+1\right)+\left(x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
b,c có ng lm rồi
d)\(2x^4-3x^3-7x^2+6x+8\)
Ta thấy x=-1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x+1
\(\Rightarrow\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)
\(\Rightarrow\left(x+1\right)\left[2x^3-x^2-4x-4x^2+2x+8\right]\)
\(\Rightarrow\left(x+1\right)\left[x\left(2x^2-x-4\right)-2\left(2x^2-x-4\right)\right]\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)
phần còn lại bạn tự lo nhé
Bài 1 :
b, Ta có : \(4x^2-25-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)
\(=-2\left(2x-5\right)\)
c, Ta có : \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=x\left(x+3\right)\left(x-2\right)\)
Bài 2 :
a, Để \(x^3+3x^2+3x-2⋮x+1\)
<=> \(x^3+1+3x^2+3x-3⋮x+1\)
<=> \(\left(x+1\right)^3-3⋮x+1\)
Ta thấy : \(\left(x+1\right)^3⋮x+1\)
<=> \(-3⋮x+1\)
<=> \(x+1\inƯ_{\left(3\right)}\)
<=> \(x+1=\left\{1,-1,3,-3\right\}\)
<=> \(x=\left\{0,-2,2,-4\right\}\)
Vậy ...
b, Để \(2x^2+x-7⋮x-2\)
<=> \(2x^2-8x+8+9x-15⋮x-2\)
<=> \(2\left(x-2\right)^2+9x-15⋮x-2\)
Ta thấy : \(2\left(x-2\right)^2⋮x-2\)
<=> \(9x-15⋮x-2\)
<=> \(9x-18+3⋮x-2\)
Ta thấy : \(8\left(x-2\right)⋮x-2\)
<=> \(3⋮x-2\)
<=> \(x-2\inƯ_{\left(3\right)}\)
<=> \(x-2=\left\{1,-1,3,-3\right\}\)
<=> \(x=\left\{3,1,5,-1\right\}\)
Vậy ...
Bài 3 :
a ) \(x\left(x-1\right)+x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy...........
b ) \(3\left(x-3\right)-4x+12=0\)
\(\Leftrightarrow3\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\) \(\left(x-3\right)=0\Rightarrow x=3\)
Vậy............
Các câu sau tương tự
Bài 2:
a: \(=\left(x+y\right)^2-\left(x+y\right)-12\)
\(=\left(x+y-4\right)\left(x+y+3\right)\)
b: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)
c: \(4x^4-32x^2+1\)
\(=4x^4+4x^2+1-36x^2\)
\(=\left(2x^2+1\right)^2-36x^2\)
\(=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)
d: \(=\left(x^2+3\right)\left(x^4-3x^2+9\right)\)
bài 2 :
\(a,x^2-2x-8=x^2-4x+2x-8\)
\(=x\left(x-4\right)+2\left(x-4\right)\)
\(=\left(x+2\right)\left(x-4\right)\)
\(b,2x^2+7x+3=2x^2+6x+x+3\)
\(=2x\left(x+3\right)+\left(x+3\right)\)
\(=\left(2x+1\right)\left(x+3\right)\)
Bài 2 :
\(a,x^2-2x-8\)
\(=x^2-4x+2x-8\)
\(=x\left(x-4\right)+2\left(x-4\right)\)
\(=\left(x+2\right)\left(x-4\right)\)
\(b,2x^2+7x+3\)
\(=2x^2+6x+x+3\)
\(=2x\left(x+3\right)+\left(x+3\right)\)
\(=\left(2x+1\right)\left(x+3\right)\)
\(c,3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(3x-1\right)\left(x-2\right)\)
\(d,4x^2-4-15\)
\(=4x^2-19\)
câu còn lại tự làm nha