K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2016

A = 2 + 22 + 23 + ... + 260

= (2 + 22) + (23 + 24) + ... + (259 + 260)

= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)

= 2.3 + 23.3 + ... + 259.3

= 3.(2 + 23 + ... + 259) chia hết cho 3

A = 2 + 22 + 23 + ... + 260

= (2 + 22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260)

= 2.(1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 258.(1 + 2 + 22)

= 2.7 + 24.7 + ... + 258.7

= 7.(2 + 24 + ... + 258) chia hết cho 7

A = 2 + 22 + 23 + ... + 260

= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260)

= 2.(1 + 2 + 22 + 23) + 25.(1 + 2 + 22 + 23) + ... + 257.(1 + 2 + 22 + 23)

= 2.15 + 25.15 + ... + 257.15

= 15.(2 + 25 + ... + 257) chia hết cho 15

29 tháng 1 2016

bạn có nhầm đề ko ? Xem lại 250 +260 

 

29 tháng 6 2017

1) A = 120a + 36b

=> A = 12.10.a + 12.3.b

=> A = 12.(10a+3b)

Do 12.(10a+3b) \(⋮\)12

nên 120a+36b \(⋮\)12

2) Gọi (2a+7b) là (1)

         (4a+2b) là (2)

Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)

Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3

Hay 4a+2b chia hết cho 3 

3) Gọi (a+b) là (1)

          (a+3b) là (2)

Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2

Hay (a+3b) chia hết cho 2

3 tháng 10 2015

1)A=3+32+33+...+32008

A=(3+32)+(33+34)+...+(32007+32008)

A=3(1+3)+33(1+3)+...+32007(1+3)

A=3.4+33.4+...+32007.4

A=4(3+....+32007) chia hết cho 4

 

2 tháng 10 2015

1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)

A= 3.4+3^3.4+...+3^2007 .4

A= 4(3+3^3+...+3^2008)=>ĐPCM

2, theo đề bài :a+b chia hết cho 2

ta có : a+3b=a+b+2b

vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM

 

a: A=(1+4+4^2)+4^3(1+4+4^2)+...+4^21(1+4+4^2)

=21(1+4^3+...+4^21) chia hết cho 3

b: A=21(1+4^3+...+4^21)

mà 21 chia hết cho 7

nên A chia hết cho 7

c: A=(1+4+4^2+4^3)+4^4(1+4+4^2+4^3)+...+4^20(1+4+4^2+4^3)

=85(1+4^4+...+4^20) chia hết cho 17

12 tháng 10 2015

a) A = 2 + 22 + ... + 260

A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )

A = 2(1+2) + 23(1+2) + ... + 259(1+2)

A = 3.(2+23+...+259) chia hết cho 3

b) A = 2 + 22 + ... + 260

A = ( 2 + 22 + 23 + 2) + ( 25 + 26 + 27 + 28 ) + ... + ( 257 + 258 + 259 + 260 )

A = 2(1+2+22+23) + 25(1+2+22+23) + ... + 257(1+2+22+23)

A = 15.(2+25+...+257) chia hết cho 15

13 tháng 10 2023

a) \(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)

b) \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

c) \(A=2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^5+...+2^{58}\right)⋮7\)

13 tháng 10 2023

a) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= 2.(1 + 2 + 2² + ... + 2⁵⁸ + 2⁵⁹) 2

Vậy A ⋮ 2

b) A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy A ⋮ 3

c) A = 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + ... + 2⁵⁸ + 2⁵⁹ + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy A ⋮ 7

13 tháng 11 2015

A =  2 + 2+ 23 + 24 + ... + 258 + 259 + 260

A = (2 + 2+ 23 + 24) + ... + (257 +  258 + 259 + 260)

A = (2.1 + 2.2 + 2.2.2 + 2.2.2.2) + ... + (257.1 +  257.2 + 257.2.2 + 257.2.2.2)

A = 2.(1 + 2 + 4 + 8) + ... + 257.(1 + 2 + 4 + 8)

A = 2.15 + ... + 257.15

A = 15.(2 + 25 + ... + 257) chia hết cho 15

=> A chia hết cho 15

 

26 tháng 9 2016

làm đến bước chia hết cho 15 của khoi ly truong thì bạn làm tiếp là:

do A chia hết cho 15 => A chia hết cho 5 và 3