Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5) a) Ta có: \(a< b+c\)
\(\Rightarrow a^2< ab+ac\)
Tương tự: \(b^2< ba+bc\)
\(c^2< ca+cb\)
Cộng từng vế các BĐT vừa chứng minh, ta được đpcm
b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)
\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)
\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)
Nhân từng vế các BĐT trên, ta được
\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)
Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm
Bài 5:
a)
Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)
\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên
\(b+c-a,a+b-c,c+a-b>0\)
b) Áp dụng BĐT Am-Gm:
\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)
\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)
\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)
Nhân theo vế :
\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)
\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)
Do đó ta có đpcm
c)
\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)
\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)
\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)
\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)
\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)
Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)
Do đó ta có đpcm.
1.b
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-d\right)^2+\left(d-a\right)^2\ge0\) tong 4 so khong am luon dung
2 . ta có
\(\left(x-y\right)^2\ge0\)
<=> x2-2xy+y2 ≥ 0
<=> x2+4xy-2xy+y2 ≥ 4xy
<=> x2+2xy+y2 ≥ 4xy
<=> (x+y)2 ≥ 4xy
CMTT
(y+z)2 ≥ 4yz
(z+x)2 ≥ 4zx
nhân các vế của bđt ta có
[(x+y)(y+z)(z+x)]2 ≥ 64x2y2z2
<=> (x+y)(y+z)(z+x) ≥ 8xyz
2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\) và \(VP=\left(ax+by\right)^2\)
tính hiệu của cả VT và VP
suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)
vì \(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)
3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)
biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0
\(\Rightarrow\) Đpcm
* Đặt tên các biểu thức theo thứ tự là A,B,C,D,E.
Câu a)
Theo hằng đẳng thức đáng nhớ ta có:
\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)
\(=(a+b+c)^3-3[ab(a+b)+bc(b+c)+ca(c+a)+2abc]\)
\(=(a+b+c)^3-3[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)-abc]\)
\(=(a+b+c)^3-3[(a+b+c)(ab+bc+ac)]+3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=(a+b+c)^3-3(ab+bc+ac)(a+b+c)\)
\(=(a+b+c)[(a+b+c)^2-3(ab+bc+ac)]\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\) (*)
Do đó:
\(A=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)
Câu b)
\(x^3-y^3+z^3+3xyz=x^3+(-y)^3+z^3-3x(-y)z\)
Sử dụng kết quả (*) của câu a. Với \(a=x, b=-y, c=z\)
\(\Rightarrow x^3+(-y)^3+z^3-3x(-y)z=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)
Mặt khác xét mẫu số:
\((x+y)^2+(y+z)^2+(x-z)^2=x^2+2xy+y^2+y^2+2yz+z^2+x^2-2xz+z^2\)
\(=2(x^2+y^2+z^2+xy+yz-xz)\)
Do đó: \(B=\frac{(x-y+z)(x^2+y^2+z^2+xy+yz-xz)}{2(x^2+y^2+z^2+xy+yz-xz)}=\frac{x-y+z}{2}\)
Câu c) Sử dụng kết quả (*) của phần a:
\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Và mẫu số:
\((x-y)^2+(y-z)^2+(z-x)^2=2(x^2+y^2+z^2-xy-yz-xz)\)
Do đó: \(C=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{2(x^2+y^2+z^2-xy-yz-xz)}=\frac{x+y+z}{2}\)
Câu d)
Xét tử số:
\(a^2(b-c)+b^2(c-a)+c^2(a-b)\)
\(=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)
\(=(b-c)(a^2-b^2)-(b^2-c^2)(a-b)\)
\(=(b-c)(a-b)(a+b)-(b-c)(b+c)(a-b)\)
\(=(a-b)(b-c)[a+b-(b+c)]=(a-b)(b-c)(a-c)\) (1)
Xét mẫu số:
\(a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)\)
\(=a^4(b^2-c^2)-b^4[(b^2-c^2)+(a^2-b^2)]+c^4(a^2-b^2)\)
\(=(a^4-b^4)(b^2-c^2)-(b^4-c^4)(a^2-b^2)\)
\(=(a^2-b^2)(a^2+b^2)(b^2-c^2)-(b^2-c^2)(b^2+c^2)(a^2-b^2)\)
\(=(a^2-b^2)(b^2-c^2)[a^2+b^2-(b^2+c^2)]\)
\(=(a^2-b^2)(b^2-c^2)(a^2-c^2)\)
\(=(a-b)(b-c)(a-c)(a+b)(b+c)(c+a)\)(2)
Từ (1)(2) suy ra \(D=\frac{1}{(a+b)(b+c)(c+a)}\)
Câu e)
Theo phần d ta có:
\(TS=(a-b)(b-c)(a-c)\)
\(MS=ab^2-ac^2-b^3+bc^2\)
\(=b^2(a-b)-c^2(a-b)=(a-b)(b^2-c^2)=(a-b)(b-c)(b+c)\)
Do đó: \(E=\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(b+c)}=\frac{a-c}{b+c}\)
4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2
=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc
Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)
1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0
=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm
a/ x3 + x2 z + y2 z - xyz + y3
= (x + y)(x2 - xy + y2) + z(x2 - xy + y2)
= (x2 - xy + y2)(x + y + z)
Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)
1) Đặt n+1 = k^2
2n + 1 = m^2
Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ
Đặt m = 2t+1
=> 2n+1 = m^2 = (2t+1)^2
=> 2n+1 = 41^2 + 4t + 1
=> n = 2t(t+1)
=> n là số chẵn
=> n+1 là số lẻ
=> k lẻ
+) Vì k^2 = n+1
=> n = (k-1)(k+1)
Vì k -1 và k+1 là 2 số chẵn liên tiếp
=> (k+1)(k-1) chia hết cho *
=> n chia hết cho 8
+) k^2 + m^2 = 3a + 2
=> k^2 và m^2 chia 3 dư 1
=> m^2 - k^2 chia hết cho 3
m^2 - k^2 = a
=> a chia hết cho 3
Mà 3 và 8 là 2 số nguyên tố cùng nhau
=> a chia hết cho 24
3/ b/
TH 1: Trong 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)có 1 số âm hoặc 3 số đều âm thì BĐT đúng. (Thật ra không xảy ra được trường hợp cả 3 số đều âm đâu cứ ghi cho vui thôi).
TH 2: Trong 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)có 2 số âm
Giả sử 2 số âm đó là \(\left(a+b-c\right);\left(b+c-a\right)\)
\(\Rightarrow a+b-c+b+c-a=2b< 0\)trái đề bài. Nên không thể cùng lúc 2 số đều âm.
TH 3: Cả 3 số \(\left(a+b-c\right);\left(b+c-a\right);\left(c+a-b\right)\)đều dương
Ta có:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\dfrac{a+b-c+b+c-a}{2}=b\left(1\right)\)
Tương tự ta có:
\(\left\{{}\begin{matrix}\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le a\left(2\right)\\\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le c\left(3\right)\end{matrix}\right.\)
Nhân (1), (2), (3) vế theo vế ta được
\(\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\le abc\)
Vậy ta có ĐPCM
3/ c/ Sửa đề thành a,b,c là 3 cạnh của tam giác nhé.
Ta cần chứng minh
\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
\(\Leftrightarrow\left[ab^2+ac^2-a^3\right]+\left[ba^2+bc^2-b^3\right]+\left[ca^2+cb^2-c^3\right]>2abc\)
\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ca}+\dfrac{a^2+b^2-c^2}{2ab}-1>0\)
\(\Leftrightarrow\dfrac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{2abc}>0\) (đúng)
2 câu còn lại thì câu 1 sai rõ quá rồi bỏ qua. Còn câu 3a thì để t xem thử có sửa được đề không t làm nốt sau nhé. Giờ bận rồi.