K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2021

Bài 1.

Ta có:\(\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)=x^2+2020-x^2=2020\)

\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(x+\sqrt{x^2+2020}\right)\left(\sqrt{x^2+2020}-x\right)\)

\(\Rightarrow y+\sqrt{y^2+2020}=\sqrt{x^2+2020}-x\)

\(\Rightarrow x+y=\sqrt{x^2+2020}-\sqrt{y^2+2020}\)   (1)

Ta có:\(\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)=y^2+2020-y^2=2020\)

\(\Rightarrow\left(x+\sqrt{x^2+2020}\right)\left(y+\sqrt{y^2+2020}\right)=\left(y+\sqrt{y^2+2020}\right)\left(\sqrt{y^2+2020}-y\right)\)

\(\Rightarrow x+\sqrt{x^2+2020}=\sqrt{y^2+2020}-y\)

\(\Rightarrow x+y=\sqrt{y^2+2020}-\sqrt{x^2+2020}\)          (2)

Cộng vế với vế của (1) và (2) ta có:

\(2\left(x+y\right)=\sqrt{y^2+2020}-\sqrt{x^2+2020}+\sqrt{x^2+2020}-\sqrt{y^2+2020}\)

\(\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)

Bài 2: 

Ta có: (2a+1)(2b+1)=9

nên \(2b+1=\dfrac{9}{2a+1}\)

\(\Leftrightarrow2b=\dfrac{9}{2a+1}-\dfrac{2a+1}{2a+1}=\dfrac{8-2a}{2a+1}\)

\(\Leftrightarrow b=\dfrac{8-2a}{4a+2}=\dfrac{4-a}{2a+1}\)

\(\Leftrightarrow b+2=\dfrac{4-a+4a+2}{2a+1}=\dfrac{3a+6}{2a+1}\)

Ta có: \(A=\dfrac{1}{a+2}+\dfrac{1}{b+2}\)

\(=\dfrac{1}{a+2}+\dfrac{2a+1}{3a+6}\)

\(=\dfrac{3+2a+1}{3a+6}\)

\(=\dfrac{2a+4}{3a+6}=\dfrac{2}{3}\)