Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: y=\(\frac{2008-1003x}{2}\)
Để y nguyên dương => 2008-1003.x\(\ge\)0 => x\(\le\)2 và 2008-1003.x) phải là số chẵn => x là số chẵn
=> x={0; 2} => y=(1004; 1)
=> A=x2+y2 = 02+10042=10042
A=x2+y2 = 12+12=2
ĐS: A=2; A=10042
Bài 1:
ĐK: \(x,y\ge-2\)
Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)
=> x-y=0=>x=y
Thay y=x vào B ta được: B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)
Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)
Vậy Min B =9 khi x=y=-1
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
\(E=\left(x^2+y^2\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge4+\frac{4}{x^2+y^2}+2.2=9\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
bạn ơi câu 1 phương trình có đúng không vậy?
Câu 1 : Cho \(\left(x_0;y_0\right)\)là nghiệm nguyên dương của phương trình 1003x+2y=2008. Biểu thức A= \(x_0^2+y_0^2\)có giá trị bằng?