Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Các cặp góc kề bù
\(\widehat{xOy}\) và \(\widehat{yOx'}\)
\(\widehat{yOx'}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy'}\) và \(\widehat{xOy'}\)
\(\widehat{xOy'}\) và \(\widehat{xOy}\)
Các cặp góc đối:
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy}\) và \(\widehat{y'Ox}\)
b) Do \(\widehat{xOy}\) kề bù với \(\widehat{xOy'}\)
\(\Rightarrow\widehat{xOy}+\widehat{xOy'}=180^o\)
\(\Rightarrow\widehat{xOy'}=180^o-70^o=110^o\)
Giải
_ Ta có \(\widehat{xOy}=\widehat{x'Oy'}=40^0\)( đối đỉnh) => \(\widehat{xOm}=\widehat{mOy}=\widehat{y'On}=\widehat{nOx'}=\frac{40^0}{2}=20^0\)
_ \(\widehat{x'Oy}=\widehat{xOy'}=180^0-40^0=140^0\)
Với \(\widehat{EOD}+\widehat{DOF}+\widehat{FOC}\) = 300o ( chỉ 1 trong 2 cái )
a) Các cặp góc đổi đỉnh là :
+ \(\widehat{COE}\) đối đỉnh \(\widehat{DOF}\)
+ \(\widehat{EOD}\) đối đỉnh \(\widehat{COF}\)
Hình như đề bạn bị sai rồi 2 đường thẳng chỉ có thể tạo được 2 góc đổi đỉnh mà thôi
b) Với \(\widehat{EOD}+\widehat{DOF}+\widehat{FOC}\) = 300o
Thì \(\widehat{COE}=360^o-\left(\widehat{EOD}+\widehat{DOF}+\widehat{FOC}\right)\)
\(\widehat{COE}=360^o-300^o\)
\(\widehat{COE}\) = 60o
Với \(\widehat{COE}\) đối đỉnh \(\widehat{DOF}\) thì => \(\widehat{DOF}\) = 60o
Tiếp tục ta có : \(\Rightarrow\widehat{EOD}+\widehat{DOF}+\widehat{FOC}-\widehat{DOF}=\widehat{EOD}+\widehat{FOC}\)
Vì \(\widehat{EOD}\) đối đỉnh \(\widehat{FOC}\) . Nên \(300^o-60^o=2\left(\widehat{EOD}\right)\) hoặc \(300^o-60^o=2\left(\widehat{FOC}\right)\)
\(240^o=2\left(\widehat{EOD}\right)\) hoặc \(240^o=2\left(\widehat{FOC}\right)\)
Vậy \(\widehat{EOD}\) = 240o : 2
\(\widehat{EOD}\) = 120o
\(\widehat{EOD}\) = 120o tương đương với \(\widehat{FOC}\) = 120o