Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
a,\(PT\Leftrightarrow x^2-3x=x^2+2x+1-7\Leftrightarrow-5x=6\Rightarrow x=...\)
b, \(y=4x^2-3\ge-3\)
Do đó y đạt giá trị nhỏ nhất khi x=0.
Mấy câu kia cũng đơn giản mà....dùng HĐT, phân tích thành nhân tử/......cứ thế mà làm..thay đổi chút thôi...
a/ giá trị nhỏ nhất của A là 2
b/ giá trị lớn nhất của B là 51
tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm
Ta có: x + y = 1
<=> (x + y)3 = 1
<=> x3 + y3 + 3xy(x + y) = 1
<=> x3 + y3 + 3xy = 1 (do x + y = 1)
<=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x = y = 12
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)
ns thật vs c tôi ms đọc đề bài thôi đã ko hiểu j rồi ns chi đến lm giúp c. Sr nhé
1)
ta có: x+2y=1 => x=1-2y
thay vào bt, ta có:
\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1\\ A=6\left(x-\dfrac{4}{2.6}\right)^2+\dfrac{4.6.1-\left(-4\right)^2}{4a}\ge\dfrac{4.6.1-\left(-4\right)^2}{46}=\dfrac{1}{3}\)
A đạt min khi x-1/3=0 => x=1/3
vậy MIN A=1/3 tại x=1/3
áp dụng bđt cô si cho 4 số ta có
\(x^4+\dfrac{1}{16}+\dfrac{1}{16}+\dfrac{1}{16}\ge4\sqrt[4]{x^4.\dfrac{1}{16}.\dfrac{1}{16}.\dfrac{1}{16}}\)
⇔ \(x^4+\dfrac{3}{16}\ge x.\dfrac{1}{2}\)
cmtt ta có
\(y^4+\dfrac{3}{16}\ge y\dfrac{1}{2}\)
cộng các vế của bđt trên ta có
\(x^4+y^4+\dfrac{3}{8}\ge\dfrac{1}{2}\left(x+y\right)\)
⇔ \(C+\dfrac{3}{8}\ge\dfrac{1}{2}\)
⇔ \(C\ge\dfrac{1}{8}\)
minC=\(\dfrac{1}{8}\) khi x=y=\(\dfrac{1}{2}\)