\(\dfrac{1}{x}\) + \(\dfrac{1}{y}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)

30 tháng 12 2020

1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).

CM:....

Đặt 2x = x', 2z = z'.

Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)

\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)

\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)

 

 

8 tháng 11 2017

a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )

\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )

\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)

b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)

\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)

\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )

c) MTC = ( x+ 2)2(x - 2)2

Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)

\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)

8 tháng 11 2017

d) MTC = xyz( x - y)( y - z)( x - z)

Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Cộng các phân thức lại ta có :

\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

19 tháng 11 2017

a, Vì x2 ≥ 0 , 2y2 ≥ 0 với mọi x,y

=>x2+2y2+ 1 ≥ 1

=>Phân thức trên luôn có nghĩa

19 tháng 11 2017

cảm ơn bạn nhoahaha

5 tháng 4 2017

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt[]{\dfrac{1}{ab}}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt[]{ab}}\) (1)

Ta có \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(\Leftrightarrow a-2\sqrt[]{ab}+b\ge0\)

\(\Leftrightarrow a+b\ge2\sqrt[]{ab}\)

\(\Rightarrow\dfrac{a+b}{2}\le\dfrac{2\sqrt[]{ab}}{2}\)

\(\Leftrightarrow\dfrac{a+b}{2}\le\sqrt[]{ab}\)

\(\Rightarrow\dfrac{2}{\dfrac{a+b}{2}}\le\dfrac{2}{\sqrt[]{ab}}\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{2}{\sqrt[]{ab}}\) (2)

Từ (1) và (2) suy ra\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt[]{ab}}\ge\dfrac{4}{a+b}\)

hay \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)

5 tháng 4 2017

giả sử \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(1) đúng

\(\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\\ \Rightarrow\left(a+b\right)^2\ge4ab\)

\(a^2+2ab+b^2\ge4ab\)

trừ hai vế với 4ab, ta được:

\(a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(2)

vì bất đẳng thức (2) luôn đúng nên bất đẳng thức (1) luôn đúng

dấu "=" xảy ra khi và chỉ khi a=b

25 tháng 2 2018

Phương Ann Nhã Doanh Đinh Đức Hùng Mashiro Shiina

Nguyễn Thanh Hằng Nguyễn Huy Tú Lightning Farron

Akai Haruma Võ Đông Anh Tuấn

mấy anh chị cm cho e thêm cái : \(\dfrac{ay+bx}{c}=\dfrac{bz+cy}{a}=\dfrac{cx+az}{b}\)

27 tháng 8 2017

a)(x-1)(x+1)(x+2)

=(x2-1)(x+2)

=x3-x+2x2-2

b)\(\dfrac{1}{2}\)x2y(2x+y)(2x-y)

=\(\dfrac{1}{2}\)x2y(4x2-y2)

=2x4y-\(\dfrac{1}{2}\)x2y3

c)(x-\(\dfrac{1}{2}\))(x+\(\dfrac{1}{2}\))(4x-1)

=(x2-\(\dfrac{1}{4}\))(4x-1)

=4x3-x2-x+\(\dfrac{1}{4}\)

8 tháng 4 2017

Ta có:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4+\dfrac{\left(a-b\right)^2}{2ab}\)

\(\dfrac{\left(a-b\right)^2}{2ab}\ge0\)

=> \(\dfrac{\left(a-b\right)^2}{2ab}+4\ge4\) (1)

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=1+\dfrac{a}{b}+\dfrac{b}{a}+1=\dfrac{a}{b}+\dfrac{b}{a}+2\) (2)

Vì a,b>0 ,áp dụng bất đẳng thức Côsy

Ta có: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)

=> \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

Kết hợp với (2) ta có: \(\dfrac{a}{b}+\dfrac{b}{a}+2\ge4\)

Và từ (1)

=> \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4+\dfrac{\left(a-b\right)^2}{2ab}\left(đpcm\right)\)

Mình cũng không chắc nữa,bạn có thể xem lại

Chúc bạn học tốt haha

9 tháng 4 2017

cảm ơn bạn nhìu

4 tháng 11 2017

\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)

\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)

4 tháng 11 2017

kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)

b. \(\)-\(3x-4\)

14 tháng 6 2017

Ta có :

\(VT=\left(\dfrac{1}{2}xy-\dfrac{1}{3}y\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy^2+\dfrac{1}{9}y^2\right)\)

\(=\dfrac{1}{8}x^3y^3+\dfrac{1}{12}x^2y^3+\dfrac{1}{18}xy^3-\dfrac{1}{12}x^2y^3-\dfrac{1}{18}xy^3-\dfrac{1}{27}y^3\)

\(=\dfrac{1}{8}x^3y^3-\dfrac{1}{27}y^3=VT\)

\(\Rightarrow dpcm\)

Vậy : ..............