B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)
a. Tìm m để (1) có 2 nghiệm dương
b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên
B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)
a. Tìm m để (1) có 2 nghiệm trái dấu
b. Tìm m để nghiệm này bằng bình phương nghiệm kia
B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN
B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)
B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)
a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)
b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi
B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)
B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)
a. tìm m để (1) có nghiệm
b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)
Do \(x_1;x_2\) là hai nghiệm của pt nên ta có những điều sau:
\(x_1+x_2=5\) ; \(x_1x_2=-1\); \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=27\)
\(x_1^2-5x_1-1=0\Rightarrow x_1^2+3x_1-2=8x_1-1\)
Tương tự: \(x_2^2+3x_2-2=8x_2-1\)
\(x_1^2+2x_1=7x_1+1\Rightarrow x_1^3+2x_1^2=7x_1^2+x_1\)
Tương tự: \(x_2^3+2x_2^2=7x_2^2+x_2\)
Thay vào:
\(M=\left(8x_1-1\right)\left(8x_2-1\right)=64\left(x_1x_2\right)-8\left(x_1+x_2\right)+1=...\)
\(N=\left(7x_1^2+x_1-1\right)\left(7x_2^2+x_2-1\right)\)
\(N=49\left(x_1x_2\right)^2+7x_1x_2\left(x_1+x_2\right)-7\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)+1\)
Bạn tự thay số
@Nguyễn Việt Lâm