Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có OC là tia phân giác của góc AOB
\(\Rightarrow\widehat{AOC}=\widehat{COB}=\frac{\widehat{AOB}}{2}=\frac{140^o}{2}=70^o\)
\(\Rightarrow\widehat{AOC}+\widehat{COD}=180^o\)
\(\Rightarrow70^o+\widehat{COD}=180^o\Rightarrow\widehat{COD}=180^o-70^o=110^o\)
b) Ta có: \(\widehat{AOE}+\widehat{EOB}=\widehat{AOB}\)
\(\Rightarrow\frac{5}{7}\widehat{AOB}+\widehat{EOB}=\widehat{AOB}\Rightarrow\widehat{EOB}=\widehat{AOB}-\frac{5}{7}\widehat{AOB}\)
\(\Rightarrow\widehat{EOB}=\frac{2}{7}\widehat{AOB}\left(1\right)\)
\(\widehat{AOB}+\widehat{BOD}=180^o\)( kề bù )
\(\Rightarrow140^o+\widehat{BOD}=180^o\Rightarrow\widehat{BOD}=180^o-140^o=40^o\)
\(\frac{\widehat{BOD}}{\widehat{AOB}}=\frac{40^{ }}{140}=\frac{2}{7}\)
\(\Rightarrow\widehat{BOD}=\frac{2}{7}\widehat{AOB}\left(2\right)\)
Từ ( 1 ) và ( 2 ) suy ra \(\widehat{BOD}=\widehat{EOB}\)
Nên Ob là tia phân giác của \(\widehat{DOE}\)( đpcm )

a)
Vì Oa là phân giác của xOy => yOa = xOa = 90 : 2 = 45độ
Vì Ob là phân giác của xOa => xOb = aOb = 45 : 2 = 22,5độ
Vì Oc là phân giác của xOb => xOc = bOc = 22,5 : 2 = 11,25
b)
Mk đang nghĩ :V
b)
Để xOc nhỏ nhất thì xOb nhỏ nhất
Để xOb nhỏ nhất thì xOa nhỏ nhất
Để xOa nhỏ nhất thì xOy nhỏ nhất
=> ko tìm đc giá trị chính thức nhưng :
để xOc nhỏ nhất thì xOy phải nhỏ nhất
P/s : ko chắc

b, Vì tia Ox là tia phân giác của góc AOB nên AOx=BOx
Mà AOB=BOx+AOx =BOx.2
Ta có: xOy=BOx+BOy
=>xOy.2=(BOx+BOy).2
=>xOy.2=2.BOx+BOy+BOy
=>2.xOy=AOB+BOy+BOy
Mà AOB+BOy=AOy
=>2.xOy=AOy+BOy
=>xOy=(AOy+BOy)/2
k mk nha
A O B x y
Gọi tia Ox là phân giác của AOB
=>AOx<AOB. AOB<AOy
=>xOB<xOy. Trong góc: xOy ta có: xOB<xOy
=> OB nằm giữa Oy và Ox (đpcm)
b,Trong góc: AOy ta có: AOB<AOy=>OB nằm giữa Oy và OA
=> AOy=AOB+BOy
=> AOy+BOy=AOB+2BOy
Mặt khác Ox là phân giác của AOB=>xOB=xOA=1/2 AOB
OB nằm giữa Ox và Oy=>xOy=yOB+BOx=(AOy+BOy)/2 (đpcm)
b) OB nằm giữa 2 tia đối nhau Ox,OA nên 2 tia Ox,OA thuộc 2 nửa mặt phẳng đối nhau bờ OB (1)
Oy là phân giác\(\widehat{xOB}\)nên Oy nằm giữa Ox,OB =>\(\widehat{yOB}< \widehat{xOB}\); Ox,Oy ở cùng nửa mặt phẳng không chứa OA bờ OB (2)
Ot là phân giác\(\widehat{AOB}\)nên Ot nằm giữa OA,OB =>\(\widehat{tOB}< \widehat{AOB}\); Ot,OA ở cùng nửa mặt phẳng không chứa Ox bờ OB (3)
Từ (1),(2),(3),ta có Oy,Ot nằm ở 2 nửa mặt phẳng đối nhau bờ OB ;\(\widehat{yOB}+\widehat{tOB}< \widehat{xOB}+\widehat{AOB}=180^0\)
=> OB nằm giữa Oy,Ot\(\Rightarrow\widehat{yOt}=\widehat{yOB}+\widehat{tOB}\)mà
\(\widehat{yOB}=\frac{\widehat{xOB}}{2};\widehat{tOB}=\frac{\widehat{AOB}}{2}\)(Oy,Ot lần lượt là phân giác\(\widehat{xOB},\widehat{AOB}\))\(\Rightarrow\widehat{yOt}=\frac{\widehat{xOB}+\widehat{AOB}}{2}=\frac{180^0}{2}=90^0\)
P/S : 1 cách chứng minh tia nằm giữa 2 tia :
Cho 2 tia Ox,Oz nằm ở 2 nửa mặt phẳng đối nhau bờ Oyvà tổng 2 góc kề nhau trên không vượt quá 1800 thì Oy nằm giữa Ox,Oz
a) Ox,OA đối nhau nên\(\widehat{AOB},\widehat{xOB}\)kề bù\(\Rightarrow\widehat{AOB}+\widehat{xOB}=180^0\Rightarrow\widehat{xOB}\)= 1800 - 500 = 1300
b) Chứng minh OB nằm giữa Oy,Ot rồi mình giải