Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\) ADE và \(\Delta\)ABC có:
AD = AB (giả thuyết)
\(\widehat{A_1}=\widehat{A_2}=90^0\)
AE = AC (giả thuyết)
Do đó \(\Delta ADE=\Delta ABC\) (c.g.c)
=> DE = BC (2 cạnh tương ứng)
b) Ta có: \(\widehat{D_1}=\widehat{D_2}\) (2 góc đối đỉnh)
\(\widehat{C}=\widehat{E}\) (\(\Delta ADE=\Delta ABC\))
=> \(\widehat{N}=\widehat{A}=90^0\)
Hay DE vuông góc với BC
A B C D E N
\(a.\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(AD=AB\) \(\left(gt\right)\)
\(\widehat{DAE}=\widehat{BAC}\left(=90^0\right)\)
\(AE=AC\) \(\left(gt\right)\)
Do đó : \(\Delta ADE=\Delta ABC\left(c-g-c\right)\)
\(\Rightarrow DE=BC\) ( hai cạnh tương ứng )
\(b.\)
Ta có :
\(\widehat{ADE}=\widehat{CDN}\) ( hai góc đối đỉnh )
\(\widehat{C}=\widehat{E}\) ( vì \(\Delta ADE=\Delta ABC\) )
\(\Rightarrow\widehat{N}=\widehat{A}\left(90^0\right)\)
Hay \(DE\perp BC\)
Vậy \(DE\perp BC\)
I A B C M D E
a) Vì AD // BM nên góc DAI = IBM (so le trong)
Xét ΔDAI và ΔMBI có:
DA = MB (giả thiết)
góc DAI = MBI (chứng minh trên)
AI = BI ( suy từ gt )
=> ΔDAI = ΔMBI ( c.g.c )
=> Góc DIA = MIB ( 2 góc tương ứng ) (1)
mà góc DIB + DIA = 180 độ (kề bù) (2)
Thay (1) vào (2) suy ra được góc DIB + MIB = 180 độ
mà 2 góc này kề nhau nên M, D, I thẳng hàng.
b) Do ΔDAI = ΔMBI nên DI = MI ( 2 cạnh tương ứng )
Xét ΔDIB và ΔMIA có:
DI = MI (chứng minh trên)
góc DIB = MIA (đối đỉnh)
IB = IA (suy từ gt)
=> ΔDIB = ΔMIA (c.g.c)
=> góc IDB = IMA (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong nên AM // DB.
a: Xét tứ giác ADBM có
AD//BM
AD=BM
Do đó: ADBM là hình bình hành
Suy ra: Hai đường chéo AB và DM cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của AB
nên I là trung điểm của DM
hay D,I,M thẳng hàng
b: Ta có: ADBM là hình bình hành
nên AM//DB
c: Xét tứ giác DECB có
DE//BC
DE=BC
Do đó: DECB là hình bình hành
Suy ra: CE//DB
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt)
BH=HC ( H là trung điểm của BC)
Cạnh AH chung
=> tam giác AHB= tam giác AHC( c.c.c)
b) Vì tam giác AHB = tam giác AHC ( cm trên)
=> góc AHB = góc AHC ( 2 góc tương ứng )
Mà góc AHB + góc AHC = 180o( 2 góc kề bù)
=> góc AHB = góc AHC = 180o : 2= 90o
=> AH \(\perp\) BC ( câu c) mik đnag nghĩ)
a) Ta có: AB = AC (gt)
=> Góc B = Góc C ( quan hệ giữa góc và cạnh đối diện)
b) Ta có: AD = AE (gt)
=> Góc ADE = Góc AED ( quan hệ giữa góc và cạnh đối diện) => tam giác ADE cân tại A
Vì 2 tam giác này cùng cân tại A nên:
Ta có: góc B = góc C = \(\frac{180-A}{2}\)
Ta lại có: góc ADE = góc AED (cmt) =\(\frac{180-A}{2}\)
=> Góc ADE = góc ABC
Mà 2 góc này ở vị trí đồng vị => DE//BC
1: Ta có:ABCD là hình chữ nhật
nên AB=CD;AD=BC
2: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Xét ΔADE và ΔCBF có
\(\widehat{D}=\widehat{B}\)
AD=CB
\(\widehat{DAE}=\widehat{BCF}\)
Do đó: ΔADE=ΔCBF
Suy ra: \(\widehat{AED}=\widehat{CFB}\)
=>\(\widehat{AEC}=\widehat{CFA}\)
Xét tứ giác AECF có
\(\widehat{AEC}=\widehat{CFA}\)
\(\widehat{FAE}=\widehat{FCE}\)
Do đó: AECF là hình bình hành
Suy ra: AE//CF