\(\dfrac{a+b+c}{a+b-c}\) = \(\dfrac{a-b+c}{a-b-c}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a+b+b}{a+b-c}=\dfrac{a-b+c}{a-b-c}=\dfrac{a+b+c-\left(a-b+c\right)}{a+b-c-\left(a-b-c\right)}=\dfrac{a+b+c-a+b-c}{a+b-c-a+b+c}=\dfrac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow c=-c\)

\(\Rightarrow c-\left(-c\right)=0\)

\(\Rightarrow c+c=0\)

\(\Rightarrow2c=0\)

\(\Rightarrow c=0\)

\(\Rightarrow\) Đpcm.

22 tháng 11 2022

\(\Leftrightarrow\dfrac{10a+b}{10b+c}=\dfrac{b}{c}\)

=>10ac+bc=10b^2+cb

=>10ac=10b^2

=>ac=b^2

=>a/b=b/c=k
=>a=bk; b=ck

=>a=ck*k=k^2*c

\(\dfrac{a}{c}=\dfrac{k^2c}{c}=k^2\)

\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{b^2k^2+b^2}{c^2k^2+c^2}=\dfrac{b^2}{c^2}=\dfrac{c^2k^2}{c^2}=k^2\)

=>ĐPCM

17 tháng 9 2017

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=> a = b.k ; c = d.k

Ta lại có : \(\dfrac{a-b}{a+b}=\dfrac{b.k-b}{b.k+b}=\dfrac{b.\left(k-1\right)}{b.\left(k+1\right)}=\dfrac{k-1}{k+1}\)

\(\dfrac{c-d}{c+d}=\dfrac{d.k-d}{d.k+d}=\dfrac{d.\left(k-1\right)}{d.\left(k+1\right)}=\dfrac{k-1}{k+1}\)

\(\dfrac{a-b}{a+b}=\dfrac{k-1}{k+1}\) ; \(\dfrac{c-d}{c+d}=\dfrac{k-1}{k+1}\) nên \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)

Vậy \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)

22 tháng 11 2022

\(\Leftrightarrow\dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}\)

=>10ac+bc=10b^2+cb

=>10ac=10b^2

=>ac=b^2

14 tháng 10 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Suy ra: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\left(1\right)\)

\(Và:\) \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\)

Vậy \(\dfrac{a}{b}=\dfrac{a+c}{b+d}\) \(\left(ĐPCM\right)\)

14 tháng 10 2018

Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

Áp dụng t/c' dãy tỉ số bằng nhau , ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\left(đpcm\right)\)

17 tháng 3 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)=k (1)

=> a=bk ,c=dk

a.Có \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2)=>\(\dfrac{a+c}{b+d}=\dfrac{a}{b}\left(=k\right)\)

b. Có \(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)

=>\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(=k^2\right)\)

12 tháng 6 2017

Giải:

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

\(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)

Vậy...

12 tháng 6 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) (1)

Thay (1) vào:

\(\dfrac{a+b}{a-b}=\dfrac{b.k+b}{b.k-b}=\dfrac{b.\left(k+1\right)}{b.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (2)

\(\dfrac{c+d}{c-d}=\dfrac{d.k+d}{d.k-d}=\dfrac{d.\left(k+1\right)}{d.\left(k-1\right)}=\dfrac{k+1}{k-1}\) (3)

Từ (2) và (3) =>\(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}=\dfrac{k+1}{k-1}\)

23 tháng 12 2017

Ta có :

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}:\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\cdot\dfrac{2}{1}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{c}\)

\(\Rightarrow\dfrac{b}{ab}+\dfrac{a}{ab}=\dfrac{2}{c}\)

\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{2}{c}\)

\(\Rightarrow2ab=\left(a+b\right)c\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

Vậy \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

26 tháng 9 2017

Áp dụng tính chất dãy tỉ số bằng nhau ; ta có :

\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

19 tháng 12 2017

\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)

\(\frac{2}{c}=\frac{a+b}{ab}\)

\(\Rightarrow2ab=ac+bc\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)( đpcm )

Võ Nguyễn Thương Thương