\(\ne\) m và a
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

a,ta có góc MAB=90°; MNB=90°(gt);(góc nội tiếp chắn 1/2đtròn)

xét tứ giác AMNB có góc MAN+MNB=90°+90°=180°

suy ra AMNB nội tiếp

b, ta có góc CAB=90°(gt); CPB=90°( góc nội tiếp chắn 1/2đtròn)

xét tứ giác CPAB có góc CAB=CPB=90°

suy ra CPAB nội tiếp ( hai góc bằng nhau cùng chắn cung CB)

suy ra góc BCA=BPA(1)

góc PBA=PCA(2)

mà góc MPN=ACB=1/2sđcung MN(3)

góc PCA=PNM=1/2sđcung PM(4)

từ 1,3 suy ra góc ACB=MPN

từ 2,4 suy ra góc PNM=PBA

xét hai tam giác PAB và PMN có 

góc APB=MPN(cmt)

góc PNM=PBA(cmt)

suy ra hai tam giác đó đồng dạng (đpcm)

c, ta có góc PDN=PCN=1/2sđ cung PN(1)

góc PAC=PBC(CPAB nội tiếp)(2)

mà góc PBC+PCB=90°(3)

từ 1,2,3 suy ra góc DAC+ADE=90°

suy ra DN vuông với AC

xét hai tam giác PCM và ECG có góc C chung

góc CEG=CPM=90°

suy ra hai tam giác đó đồng dạng

suy ra PC/EC=CM/CG

suy ra PC.CG=EC.CM(đpcm)

31 tháng 1 2019

b/ Gọi G là giao điểm của AB và DF

Ta có :

  Góc ACQ = góc AHQ ( t/g ACHQ n.t )

  Góc ACQ = góc ADF ( 2 góc n.t chắn cung AF )

=> Góc AHQ = góc ADF

Mà 2 góc ở vị trí đồng vị 

Nên \(HQ//DF\)

Mặc khác \(HQ\perp AB\)tại Q

=> \(DF\perp AB\)tại G

Xét tứ giác GBNF ta có:\(B\widehat{G}F+B\widehat{N}F=180^0\)

=> Tứ giác GBNF nội tiếp =>\(N\widehat{G}F=N\widehat{B}F\)

Mà \(N\widehat{B}F=C\widehat{A}F\)( tứ giác ACBF n.t (O))

Nên \(N\widehat{G}F=C\widehat{A}F\left(1\right)\)

Xét tứ giác GMAF ta có: \(A\widehat{M}F=A\widehat{G}F\left(=90^0\right)\)

=> Tứ giác GMAF n.t =>\(M\widehat{A}F+M\widehat{G}F=180^0\left(2\right)\)

(1) và (2) => \(N\widehat{G}F+M\widehat{G}F=180^0\)

=> \(\overline{M,G,N}\)

Mà G là giao điểm của AB và DF

Nên MN,AB,DF đồng quy tại G

MN là đường thẳng simson nha bạn

7 tháng 7 2020

khong biet

a nha

16 tháng 10 2018

Giúp mình giải bài này với mình cảm ơn

4 tháng 3 2019

ko biết

5 tháng 4 2020

a) Vì MC là đường kính (O) mà \(N\in\left(O\right)\)

\(\Rightarrow\widehat{MNC}=90^o\).Lại có \(\widehat{BAC}=90^o\)

=> B,A,N,C cùng thuộc 1 đường tròn

=> Tứ giác BANC nội tiếp

28 tháng 1 2019

A B C D E I S O

1) Xét đường tròn (O) đường kính CD => ^CED = 900 => ^DEB = 900

Xét tứ giác ADEB có: ^BAD + ^ DEB = 900 + 900 = 1800 => Tứ giác ADEB nội tiếp 

Hay 4 điểm A,D,E,B cùng thuộc một đường tròn (đpcm).

2) Tứ giác ADEB nội tiếp => ^DEA = ^DBA. Tương tự: ^DEI = ^DCI

Ta có: Tứ giác ABCI nội tiếp của đường tròn đường kính BC (Do ^BAC = ^BIC = 900)

=> ^DBA = ^DCI. Từ đó, suy ra: ^DEA = ^DEI => ED là phân giác ^AEI (đpcm).

3) Dễ thấy DE, CI, BA là 3 đường cao của \(\Delta\)BCD nên AB,CI,DE đồng quy (tại trực tâm \(\Delta\)BCD) (đpcm).

4) Xét \(\Delta\)ABC có vuông tại A: \(\tan\widehat{ABC}=\frac{AC}{AB}=\sqrt{2}\Rightarrow AB=\frac{AC}{\sqrt{2}}\)(theo gt)

Để EA là tiếp tuyến của (CD) thì ^AED = ^DCE. Hay ^ABD = ^ACB (Vì ^AED=^ABD)

<=> \(\Delta\)ADB ~ \(\Delta\)ABC (g,g) <=> \(AB^2=AD.AC\) <=> \(\left(\frac{AC}{\sqrt{2}}\right)^2=AD.AC\)

<=> \(AD=\frac{AC}{2}\)<=> D là trung điểm cạnh AC.

Vậy D là trung điểm AC thì EA là tiếp tuyến của (CD).