Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân tại C có góc ACB=100 suy ra ABC=BAC=40
Trên AB lấy điểm M sao cho AM=AD. Tam giác ADM cân tại A có góc A=20 => ADM=AMD=80 độ
Suy ra góc MDB=40 độ. Tam giác MDB cân tại M. MD=MB.(1)
Trên AB lấy điểm N sao cho AN=AC. Tam giác ACD=AND(c.g.c) => CD=DN (2)
Ta có: góc DNM=DMN=80 => Tam giác DNM cân tại D. DN=DM (3)
Từ (1),(2),(3) suy ra DC=MB
Hay AD+DC=AM+MB=AB(dpcm)
cho tam giác cân ABC có góc ACB = 100o . Kẻ phân giác trong của góc CAB cắt CB tại D. Chứng minh rằng AD + DC = AB
Câu hỏi tương tự Đọc thêm
B1): a): +)Ta có csc đường cao BD, CE cắt nhau tại I => BD vg góc vs AC; CE vg góc vs AB
+)Xét tg AEC và tg ADB, có: AEC=AHB=90( BD vg góc vs AC; CE vg góc vs AB )
BAC chung
Do đó: tg AEC ~ tg ADB ( gg)
=> AE/AD= AC/AB=> AE*AB=AD*AC (đpcm)
b) : Gợi ý hoi :)): Kẻ đcao AF xuống BC, sẽ đi qua điểm I; c/m ED//BC=> c/m đc tg AED~tg ABC theo trường hợp cgc, từ đó ta sẽ có đc 2 góc AED = ABC ( vì 2 tg trên ~ vs nhau )
A B C 5 5 6 M N
a, Vì BM là phân giác ^B nên : \(\frac{AB}{BC}=\frac{AM}{MC}\)( t/c )
\(\Rightarrow\frac{MC}{BC}=\frac{AM}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{MC}{BC}=\frac{AM}{AB}=\frac{MC+AM}{BC+AB}=\frac{5}{11}\)
\(\Rightarrow\frac{MC}{6}=\frac{5}{11}\Rightarrow MC=\frac{30}{11}\)cm
\(\Rightarrow\frac{AM}{5}=\frac{5}{11}\Rightarrow AM=\frac{25}{11}\)cm