K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Xét tam giác ABC vuông tại A có AD vuông góc với BC

=> AB2B=DC.BC; AC2=DC.BC

tam giác ABD vuông tại D có DF vuông góc với AB =>BD2=BF.AB

Tương tự DC2=CE.AC

Ta có \(\dfrac{AC^2}{AB^2}\)=\(\dfrac{DC.BC}{DB.BC}\)=\(\dfrac{DC}{DB}\)

=> \(\dfrac{AC^4}{AB^4}\)= \(\dfrac{DC^2}{DB^2}\)=\(\dfrac{CE.AC}{BF.AB}\)

=>\(\dfrac{AC^3}{AB^3}\)=\(\dfrac{CE}{BF}\)

12 tháng 3 2017

2/ gọi E là giao của BH với AC; F là giao của CH với AB

=>BE vuông góc với AC; CF vuông góc với AB

Xét tam giác AC1B có C1F vuông góc với AB =>AC12=AF.AB (1)

Tương tự AB12=AE.AC (2)

C/m tam giác AEB đồng dạng với tam giác AFC (g.g)

=> \(\dfrac{AE}{AF}\)=\(\dfrac{AB}{AC}\) => AE.AC=AF.AB (3)

Từ (1);(2) và (3) => AB1=AC1

Câu 1 

Xét tam giác OAC ta có

AC = OA = OC ( gt )

=> tam giác OAC là tam giác đều

=>\(\widehat{CAB}=60^0\)

\(\widehat{ACB}=90^0\)(góc nội tiếp chắn nửa đường tròn )

=> \(\widehat{ABC}=180^0-90^0-60^0=30^0\)

Vậy ..............

P/s hình hơi xấu thông cảm

Câu 2 )

Xét tam giác vuông KCB , ta có :

EC = EK ( gt )

MB = MC ( gt)

=>EM là đường trung bình của tam giác KCB

=> \(\widehat{BKC}=\widehat{MEC}=90^0\)

Chứng minh tương tự : Xét tam giác ECB 

=> \(\widehat{CIB}=\widehat{MPB}=90^0\)

Xét tứ giác BIKC , ta có:

\(\widehat{BKC}\)và \(\widehat{BIC}\)cùng nhìn BC dưới 1 góc 90 độ )

=> Tứ giác BIKC nội tiếp đường tròn 

=> 4 điểm B,I,K,C cùng nằm trên 1 đường tròn 

P/ s hình tự vẽ , tham khảo bài làm nha bạn

Đặt hai điểm B1;C1 lần lượt là E,F

Xét ΔAFB vuông tại F có FK là đường cao

nên \(AK\cdot AB=AF^2\left(1\right)\)

Xét ΔAEC vuông tại E có EG là đường cao

nên \(AG\cdot AC=AE^2\left(2\right)\)

Xét ΔAGB vuông tại G và ΔAKC vuông tại K có

góc KAC chung

Do đó: ΔAGB\(\sim\)ΔAKC

Suy ra: AG/AK=AB/AC

hay \(AG\cdot AC=AK\cdot AB\left(3\right)\)

Từ (1) và (2) suy ra AE=AF