Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cau 2:
a: Xét tứ giác DAHB có
M là trung điểm của DH
M là trung điểm của AB
Do đó: DAHB là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên DAHB là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình
=>MP//AC và MP=AC/2
=>MP//AN và MP=AN
=>AMPN là hình bình hành
Để AMPN là hình chữ nhật thì \(\widehat{BAC}=90^0\)
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
a, xét tứ giác BICG có :
M là trung điểm cuả BC do AM là trung tuyến (gt)
M là trung điểm của GI do I đx G qua M (gt)
=> BICG là hình bình hành (dh)
+ G là trọng tâm của tam giác ABC (gt)
=> GM = AG/2 và GN = BG/2 (đl)
E; F lần lượt là trung điểm của GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)
=> FG = GM và GN = GE
=> G là trung điểm của FM và EN
=> MNFE là hình bình hành (dh)
b, MNFE là hình bình hành (câu a)
để MNFE là hình chữ nhật
<=> NE = FM
có : NE = 2/3BN và FM = 2/3AM
<=> AM = BN mà AM và BN là trung tuyến của tam giác ABC (Gt)
<=> tam giác ABC cân tại C (đl)
c, khi BICG là hình thoi
=> BG = CG
BG và AG là trung tuyến => CG là trung tuyến
=> tam giác ABC cân tại A
a)ta có I là trung điểm của AC ( gt)
I là trung điểm của MK(K dối xứng với M qua I)
=>AMCK là hình bình hành
xét tam giác ABC cân tại A có
AM là trung tuyến của tam giác ABC
=>AM cũng là đường cao của tam giác ABC
=>góc AMC =900
mà AMCK là hình bình hành =>AMCK là hình chữ nhật
b)ta có :KA=CM(AMCK là hình chữ nhật)
mà CM=MB nên KA=MB
Xét tam giác AMK vuông tại A và tam giác MAB vuông tại M
AM : cạnh chung
KA=MB(chứng minh trên)
Suy ra tam giác AMK=tam giác MAB(cgv-cgv)
=>góc AMK=góc BAM (2 góc tương ứng )
Mà hai góc này ở vị trí so le trong nên:
AB song song MK
ta lại có AB=KM(tam giác AMK=tam giác MAB)
=>AKMB là hình bình hành
c)ta có AMCK là hình vuông
=>AM=CM
mà CM=BM(AM là trung tuyến của tam giác ABC)
nên AM=\(\frac{CM+BM}{2}+\frac{BC}{2}\)
=>tam giác ABC vuông cân tại A
Vậy tam giác ABC cần có thêm điều kiện là cân tại A thì AMCK là hình vuông
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông
a, xét tứ giác DAHB có : M là trung điểm của AB (Gt)
H đối xứng với D qua M (gt) => M là trung điểm của HD (đn)
=>DAHB là hình bình hành (dh)
có : ^AHB = 90 do AH _|_ BC (gt)
=> DAHB là hình chữ nhật (dh(
b, DAHB là hình chữ nhật
để DAHB là hình vuông
<=> AH = BH (dh)
<=> tam giác AHB cân tại H (đn)
có ^AHB = 90 (câu a)
<=> tam giác AHB vuông cân tại H
<=> ^ABH = 45
mà tam giác ABC cân tại A (gt)
<=> tam giác ABC vuông cân tại A