Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
c: góc AID=góc BIH=90 độ-góc IBH
góc ADI=90 độ-góc ABD
mà góc IBH=góc ABD
nên góc ADI=góc AID
=>ΔAID cân tại A
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: Xét ΔBAH vuông tại H và ΔACH vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\)
DO đó: ΔBAH\(\sim\)ΔACH
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=100\)
hay BC=10cm
Xét ΔABC có BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)
hay \(AB^2=BH\cdot BC\)
c) Ta có: \(\widehat{ABD}=\widehat{DBC}\)( BD là phân giác )\(\Rightarrow90^0-\widehat{ABD}=90^0-\widehat{DBC}\Rightarrow\widehat{BIH}=\widehat{ADI}\Rightarrow\widehat{AID}=\widehat{ADI}\Rightarrow\Delta ADI\) cân tại A\(\Rightarrow AI=AD\Rightarrow\dfrac{AB}{AI}=\dfrac{AB}{AD}\)
Xét Δ ABI và Δ CBD có:
\(\widehat{BAI}=\widehat{BCD}\left(\Delta ABC\sim\Delta HBA\right)\)
\(\dfrac{AB}{AI}=\dfrac{BC}{CD}\left(=\dfrac{AB}{AD}\right)\)
\(\Rightarrow\Delta ABI\sim\Delta CBD\left(c.g.c\right)\)
d) Xét ΔABH có:
BI là tia phân giác của \(\widehat{ABH}\)
\(\Rightarrow\dfrac{IH}{IA}=\dfrac{BH}{AB}\left(1\right)\)( tính chất tia phân giác)
Xét ΔABC có:
BD là tia phân giác của \(\widehat{ABC}\)
\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)( tính chất tia phân giác)
Ta có: \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\left(\Delta ABC\sim\Delta HBA\right)\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(đpcm\right)\)
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{CBA}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a. △AHB∼△CAB (g-g) ; △CHA∼CAB (g-g) \(\Rightarrow\)△AHB∼△CHA (t/c bắc cầu)
b. \(\widehat{ABI}=\widehat{CBD}\) (BD là tia phân giác của góc ABC) ; \(\widehat{BAI}=\widehat{BCD}\)
(△AHB∼△CHA) \(\Rightarrow\)△BIA∼△BDC (g-g)
c. △BAD∼△HBI (g-g) \(\Rightarrow\widehat{ADB}=\widehat{BIH}=\widehat{AID}\)
\(\Rightarrow\)△AID cân tại A.
d. \(\dfrac{BI}{BD}=\dfrac{BA}{BC}\) (BIA∼△BDC) mà \(\dfrac{BA}{BC}=\dfrac{DA}{DC}\) (BD là phân giác của △ABC)
\(\Rightarrow\dfrac{BI}{BD}=\dfrac{AD}{CD}\Rightarrow AD.BD=BI.DC\)