Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E
a, Xét tam giác AHB và tam giác CHA ta có :
^AHB = ^CHA = 900
^ABH = ^CAH ( cùng phụ ^BAH )
Vậy tam giác AHB ~ tam giác CHA ( g.g )
b, Xét tam giác AEB và tam giác DAB ta có
^AEB = ^DAB = 900
^B _ chung
Vậy tam giác AEB ~ tam giác DAB ( g.g )
A B C D H
a) Sử dụng định lí Pita go tính đc BC=10 cm
Vì AD là phân giác góc A , D thuộc Bc nên ta có:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{8}{6}=\frac{4}{3}\Rightarrow\hept{\begin{cases}BD=\frac{4}{7}.BC=\frac{40}{7}\\CD=\frac{3}{7}.BC=\frac{30}{7}\end{cases}}\) (cm)
b) Xét tam giác AHB và tam giác CHA
có: \(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{ABH}=\widehat{CAH}\)( cùng phụ góc ACB)
=> tam giác ABH đồng dạng tam giác CHA
c) \(S_{\Delta ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.6}{10}=\frac{24}{5}\)(cm)
Xét tam giác AHB vuông và tam giác AHC vuông
Sử dụng định lí pitago để tính \(BH=\frac{32}{5};CH=\frac{18}{5}\)(cm)
\(S_{\Delta AHB}=\frac{1}{2}.AH.BH=\frac{1}{2}.\frac{24}{5}.\frac{32}{5}=\frac{384}{25}\left(cm^2\right)\)
\(S_{\Delta AHC}=\frac{1}{2}.AH.CH=\frac{1}{2}.\frac{24}{5}.\frac{18}{5}=\frac{216}{25}\left(cm^2\right)\)
-Lưu ý: Chỉ mang tính chất tóm tắt lại bài làm, bạn không nên trình bày theo!
a. △AHB∼△CAB (g-g) ; △CHA∼CAB (g-g) \(\Rightarrow\)△AHB∼△CHA (t/c bắc cầu)
b. \(\widehat{ABI}=\widehat{CBD}\) (BD là tia phân giác của góc ABC) ; \(\widehat{BAI}=\widehat{BCD}\)
(△AHB∼△CHA) \(\Rightarrow\)△BIA∼△BDC (g-g)
c. △BAD∼△HBI (g-g) \(\Rightarrow\widehat{ADB}=\widehat{BIH}=\widehat{AID}\)
\(\Rightarrow\)△AID cân tại A.
d. \(\dfrac{BI}{BD}=\dfrac{BA}{BC}\) (BIA∼△BDC) mà \(\dfrac{BA}{BC}=\dfrac{DA}{DC}\) (BD là phân giác của △ABC)
\(\Rightarrow\dfrac{BI}{BD}=\dfrac{AD}{CD}\Rightarrow AD.BD=BI.DC\)