K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

a) AB = 6cm

b) ABD = CMD (c-g-c)

c)=> góc ABD = góc M và CM=AB < BC (tam giác ABC vông tại A)

=>góc M > góc CBD mà góc M = góc ABD =>góc ABD < góc CBD

d) Ở chứng minh trên, ta có góc ABD = góc M và ở vị trí so le trong => AB // CM

e)Ta có: BC+CM > BM = 2BD

mà CM = AB nên AB+BC > 2BD

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
27 tháng 4 2016

Các bạn chỉ cần làm câu d thôi

15 tháng 12 2016

A B C M D

a) Xét ΔABD và ΔMCD có:

AD=MD(gt)

\(\widehat{ADB}=\widehat{CDM}\left(đđ\right)\)

BD=CD(gt)

=> ΔABD=ΔMCD(c.g.c)

b) Đính chính lại đề: CM AB vuông góc vs CM

VÌ: ΔABD=ΔMCD(cmt)

=> \(\widehat{ABD}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong

=>AB//CM

c)Xét ΔBDM và ΔCDA có:

DB=DC(gt)

\(\widehat{BDM}=\widehat{CDA}\left(đđ\right)\)

DM=AD(gt)

=>ΔBDM=ΔCDA(c.g.c)

=>\(\widehat{BMD}=\widehat{CAD}\). Mà hai góc này ở vị trí sole trong

=>AC//BM

16 tháng 12 2016

đọc nhầm đề lm lại từ phần b

b) Vì: ΔABD=ΔMCD(cmt)

=> \(\widehat{ABD}=\widehat{MCD}\) .Mà hai góc này ở vị trid sole trong

=> AB//CM

Mà: \(AB\perp AC\left(gt\right)\)

=> \(AC\perp CM\)

phần c vẫn như ở dưới

cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AB=AD.

a) C/m: Tam giác ABC=tam giác ADC

b)Biết AC=8cm, BC=10cm. So sánh các góc của tam giác ABC

c)Gọi N là trung điểm của BC, đường thẳng qua B song song với CD cắt DN tại K. C/m: DN=NK. Từ dó =>2DN<DC+DB

d)Đường thẳng qua A song song với BC cắt CD tại M. C/m: M là trung điểm của CD.

19 tháng 4 2019

Hình tự vẽ nhé.

a) 

Xét \(\Delta ABD\)và \(\Delta MBD\)có:

\(\widehat{A}=\widehat{M}\left(=90^0\right)\)

BD chung

\(\widehat{B_1}=\widehat{B_1}\)(Phân giác \(\widehat{B}\))

\(\Rightarrow\)\(\Delta ABD\)\(\Delta MBD\)(cạnh huyền - góc nhọn)

b) Xét \(\Delta CDM\)và \(\Delta CNM\)có:

DM = MN (gt)

\(\widehat{DMC}=\widehat{NMC}\left(=90^0\right)\)

MC chung

\(\Rightarrow\Delta CDM=\Delta CNM\)(hai cạnh góc vuông)

\(\Rightarrow DC=NC\)

\(\Rightarrow\Delta DCN\)cân tại C

Có CM là trung tuyến của \(\Delta DCN\)(do DM = MN)

Mà CM và DK lại giao nhau tại điểm E \(\Rightarrow\)E là trọng tâm của tam giác DCN

\(\Rightarrow DE=\frac{2}{3}DK\Rightarrow DE=\frac{2}{3}.21=14\left(cm\right)\)

d) Tạm thời chưa nhớ ra.