K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2019

A B C H D 3 4

Xét \(\Delta ABC\)\(\perp\) tại \(A\)

Áp dụng định lí py - ta - go :

BC2 = AB2 + AC2

BC2 = 32 + 42

BC2 = 9 + 16

BC2 = 25

BC = 5 cm

Vậy BC = 5 cm .

Xét \(\Delta ABC\)có BD là đường phân giác \(\widehat{B}\)

\(\Rightarrow\)\(\frac{DA}{DC}=\frac{AB}{BC}\)\(\Rightarrow\) \(\frac{DA}{DC}=\frac{3}{5}\)\(\Rightarrow\) \(\frac{DA}{3}=\frac{DC}{5}\)\(=\frac{DA+DC}{3+5}=\frac{4}{8}=\frac{1}{2}\)

\(\Rightarrow\)\(\frac{DA}{3}=\frac{1}{2}\)\(\Rightarrow\)\(DA=\frac{3}{2}=1,5\)cm

Ta có : AC = AD + DC

           4 = 1,5 + DC

\(\Rightarrow DC=2,5\)cm

Xét \(\Delta AHB\) và  \(\Delta CAB\) có :

         \(\widehat{AHB}\)\(=\)\(\widehat{CAB}\) ( cùng bằng 900 )

           \(\widehat{B}\) chung

\(\Rightarrow\)\(\Delta AHB\)\(~\)\(\Delta CAB\) ( g - g )

6 tháng 4 2019

Do \(\Delta AHB\) \(~\)\(\Delta CAB\)

\(\Rightarrow\)\(\frac{AB}{BH}=\frac{BC}{AB}\)\(\Rightarrow\)\(AB.AB=BH.BC\)\(\Rightarrow\)\(AB^2=BH.BC\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Vậy: BC=20cm

22 tháng 4 2021

Bạn tính lại câu c nhé! Có thể mình sai đâu đó.undefined

24 tháng 4 2021

ĐÚNG GỒI BẠN ƠI (CHỮ ƠI KÉO DÀI)haha

a: BC=10cm

Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạngvới ΔHBA

b: AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: BC=căn 6^2+8^2=10cm

HA=6*8/10=4,8cm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA đồng dạng với ΔABC

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=400\)

=>\(BC=\sqrt{400}=20\left(cm\right)\)

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

=>\(S_{ABD}=\dfrac{3}{4}\cdot S_{ACD}\)

d: Ta có: \(\dfrac{BD}{CD}=\dfrac{3}{4}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

=>\(BD=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);CD=\dfrac{20}{7}\cdot4=\dfrac{80}{7}\left(cm\right)\)

e: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot20=12\cdot16=192\)

=>AH=192/20=9,6(cm)