Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi M,N lần lượt là trung điểm GC, AB và M', N' lần lượt là hình chiếu của M và N trên d.
Ta có G là trọng tâm của ΔABCΔABC nên ⇒GM=MC=NG⇒GM=MC=NG
Từ hình thang GG'CC': GM=MC ,MM′//GG′(⊥d)
Do đó MM′ là đường trung bình của hình thang GG′CC′
⇒2MM′=GG′+CC′ 1
Tương tự với hình thang BB′AA′ ta được 2NN′=BB′+AA′(2)
và hình thang NN′M′M được 2GG′=NN′+MM′ 3
Từ (1),(2),(3) ta được
⇔4GG′−GG′=CC′+BB′+AA′
⇔3GG′=CC′+BB′+AA′(đpcm)

gọi M,N lần lượt là trung điểm của GC, AB.
M', N' lần lượt là hình chiếu của M và N trên d.
ta có G là trọng tâm của tam giác ABC
\(\Rightarrow GM=MC=NG\)
hình thang GG'C'C : \(\left\{{}\begin{matrix}GM=MC\\MM'\text{//}GG'\left(\perp d\right)\end{matrix}\right.\)
do đó MM' là dg trung bình của hình thang GG'C'C.
\(\Rightarrow2MM'=GG'+CC'\)(1)
tương tự, hình thang B'BAA' có: \(2NN'=BB'+AA'\)(2)
hình thang NN'M'N có: \(2GG'=NN'+MM'\)(3)
• từ (1),(2) và (3) suy ra : \(4GG'=CC'+GG'+BB'+AA'\)
\(\Leftrightarrow4GG'-GG'=CC'+BB'+AA'\\ \Leftrightarrow3GG'=CC'+BB'+AA'\left(đpcm\right)\)