K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017
Cho tam giác ABC,Trên tia đối của tia BA lấy điểm D sao cho BD = BA,Trên cạnh BC lấy điểm E sao cho BE = 1/3BC,Gọi K là giao điểm của AE và CD,Chứng minh DK = KC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7
18 tháng 4 2017

ai giup minh cau 2a khg

chiu nay co kiem tra rui

giup minh vskhocroikhocroikhocroi

16 tháng 4 2018

Tao ko bit

21 tháng 4 2018

de lam cac ban

...........

3 tháng 5 2016

a/ Áp dụng định lí Pytago vào tam giác vuông ABC ta được:

BC^2=AB^2+AC^2=3^2+4^2=5^2

=> BC=5 cm

3 tháng 5 2016

b)c/m tam giác BAM= tam giác CDM=><ABC=<DCB mà 2 góc này là 2 góc so le trong=>AB//DC

VÌ tam giác BAM= tam giác CDM=> AB=CD

21 tháng 4 2019

A B C D E I

a, Áp dụng định lý Pytago vào tam giác vuông ABC có:

 AB2 + AC2 = BC2

9+ AC2 = 152

81 + AC2 = 225

AC2 = 225 - 81

AC= 144

AC = 12 (cm)

Xét tam giác ABC có: AB < AC < BC.
nên góc ACB <  ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )

b,do A là trung điểm BD (gt)
nên AB=DB 
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C

c,...

21 tháng 4 2019
10 sao nhé10 K NHA !

Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ

                                                                                   góc ACB+ACE=180 độ

=> góc ABD=góc  ACE

Xét tam giác ABD và tam giác ACE có 

AB=AC (tam giác ABC cân tại A)

góc ABD=góc ACE (cmt)

BD=CE(gt)

=> tam giác ABD=tam giác ACE(c-g-c)

=> AD=AE(cạnh tương ứng)

Vậy tam giác ADE cân và cân tại A

b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E

Xét tam giác AMD và tam giác AME có:

AD=AE(tam giác ADE cân tại A)

góc D=góc E(cmt)

góc AMD=góc AME=90 độ

=> tam giác AMD=tam giác AME(ch-gn)

=> góc DAM=góc EAM(góc tương ứng)

Vậy AM là tia phân giác góc DAE

 

1 tháng 3 2018

A B C D E M I

a) Ta có : \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{CBD}=180^o\\\widehat{ACB}+\widehat{BCE}=180^o\end{matrix}\right.\left(kềbù\right)\)

Lại có : \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) cân tại A)

Nên : \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)

\(\Leftrightarrow\widehat{CBD}=\widehat{BCE}\)

Xét \(\Delta BDC,\Delta CBE\) có :

\(BC:Chung\)

\(\widehat{CBD}=\widehat{BCE}\left(cmt\right)\)

\(BD=CE\left(gt\right)\)

=> \(\Delta BDC=\Delta CBE\left(c.g.c\right)\)

Xét \(\Delta BID,\Delta CIE\) có :

\(\widehat{BID}=\widehat{CIE}\) (đối đỉnh)

\(BD=CE\left(gt\right)\)

\(\widehat{BDI}=\widehat{CEI}\) (do \(\Delta BDC=\Delta CBE\))

=> \(\Delta BID=\Delta CIE\left(g.c.g\right)\)

=> \(\left\{{}\begin{matrix}IB=IC\left(\text{2 cạnh tương ứng}\right)\\ID=IE\left(\text{2 cạnh tương ứng}\right)\end{matrix}\right.\)

b) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{tam giác ABC cân tại A}\right)\\BD=CE\left(gt\right)\end{matrix}\right.\)

Lại có : \(\left\{{}\begin{matrix}AB+BD=AD\\AC+CE=AE\end{matrix}\right.\)

Suy ra : \(AB+BD=AC+EC\)

\(\Leftrightarrow AD=AE\)

=> \(\Delta ADE\) cân tại A

Ta có : \(\widehat{ADE}=\widehat{AED}=\dfrac{180^o-\widehat{A}}{2}\left(1\right)\)

Xét \(\Delta ABC\) cân tại A có :

\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{A}}{2}\right)\)

Mà thấy : 2 góc này ở vị trí đồng vị

=> \(BC//DE\rightarrowđpcm\)

c) Xét \(\Delta ABM,\Delta ACM\) có :

\(AB=AC\) (\(\Delta ABC\) cân tại A)

\(\widehat{ABM}=\widehat{ACM}\) (\(\Delta ABC\) cân tại A)

BM = CM (M là trung điểm của BC)

=> \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)

=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)

=> AM là tia phân giác của \(\widehat{A}\) (3)

Ta chứng minh : \(\Delta ABI=\Delta ACI\)

Suy ra : \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)

=> AI là tia phân giác của \(\widehat{A}\) (4)

Từ (3) và (4) => \(AM\equiv AI\)

=> A, M, I thẳng hàng.

=> đpcm