K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: d//AD

mà AD cắt AC

nên d cắt AC tại E

b: Ta có: BE//AD
nên \(\widehat{ABE}=\widehat{BAD}\)(hai góc so le trong) và \(\widehat{AEB}=\widehat{CAD}\)(hai góc đồng vị)

mà \(\widehat{BAD}=\widehat{CAD}\)

nên \(\widehat{ABE}=\widehat{AEB}\)

c: ta có: m\(\perp\)AD

EB//AD

Do đó:m\(\perp\)EB

28 tháng 2 2018

Bạn ơi sai đề mất rùi, nếu nối B với H lại ta có tam giác BAH vuông ở A 

=> BH là cạnh huyền mà AD<AH ( AH là cạnh góc vuông )

=> BH>AD => Ko thể = đc.

28 tháng 2 2018

đúng mà

a)

Vì AB//DE ⇒BADˆ=ADEˆ⇒BAD^=ADE^(so le trong)

mà BADˆ=DAEˆBAD^=DAE^(gt) ⇒DAEˆ=ADEˆ⇒DAE^=ADE^ hay ΔAEDΔAED cân tại E⇒AE=ED⇒AE=ED(1)

b)

Xét ΔKEBΔKEB và ΔDBEΔDBE có:

KBEˆ=BEDˆKBE^=BED^(BA//BE)

BE cạnh chung

KEBˆ=EBDˆKEB^=EBD^(KE//BC)

⇒ΔKEB=ΔDBE⇒ΔKEB=ΔDBE(G-C-G)

⇒BK=DE⇒BK=DE(2)

Từ (1) và (2) ⇒BK=AE

chúc bạn học tốt ❤❤❤😀😀😀😀😀😀🎈🎈

27 tháng 3 2019

a) Vì D nằm trên tia đối của HA

=> BH\(\perp\)HD

Xét 2 \(\Delta BHA\) và \(\Delta BHD\)có :

HA = HD (gt)

\(\widehat{BHA}\) = \(\widehat{BHD}\)

BH là cạnh chung

=>\(\Delta BHA\)\(\Delta BHD\)(c.g.c)

=>\(\orbr{\begin{cases}\widehat{ABH}=\widehat{DBH}\\AB=BD\end{cases}}\)

Xét 2 \(\Delta ABC\)và \(\Delta DBC\)có:

AB=AD (cmt)

\(\widehat{ABC}\) = \(\widehat{DBC}\)(cmt)

BH là cạnh chung

=> \(\Delta ABC=\Delta DBC\)(c.g.c)

Mà \(\Delta ABC\)vuông cân 

Nên \(\Delta DBC\)vuông cân 

Vậy \(\Delta DBC\)vuông cân (đpcm)

b) Vì \(\Delta ABC\)vuông cân tại A

=> \(\widehat{ABC}=\widehat{ACB}=\frac{90^o}{2}=45^o\)

Vì \(\Delta DBC\)vuông cân tại D

=>\(\widehat{DBC}=\widehat{DCB}=\frac{90^o}{2}=45^o\)

Ta có: \(\widehat{ABC}+\widehat{DBC}=90^o\)

Mà \(\widehat{ABC}+\widehat{DBC}=\widehat{ABD}\)

=> \(\widehat{ABD}=90^o\)

Ta có \(\widehat{DBE}+\widehat{ABE}=\widehat{ABD}=90^o\)

          \(\widehat{FBA}+\widehat{ABE}=\widehat{FBE}=90^o\)(vì FB\(\perp\)BE)

=>    \(\widehat{DBE}=\widehat{FBA}\)

Xét 2 \(\Delta\) ABF và \(\Delta\) DBE có:

\(\widehat{FBA}=\widehat{EBD}\)

AB = BD

\(\widehat{BAF}=\widehat{BDE}\left(=90^o\right)\) 

=>\(\Delta ABF=\Delta DBE\)(g.c.g)

=> BE=BF ( 2 cạnh tương ứng)

Vậy BE=BF (đpcm)