Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
bạn tự CM : FE//CA => AEFC là hình thang mà góc A = 90 độ => AEFC là hình thang vuông
Ta có : AE= EB= AB/2=3/2= 1,5 ( E trung điểm AB)
tam giác ABC là nữa tam giác đều =>BC=2AB=2.3=6 . Tính dc AC =\(3\sqrt{3}\)( Py-ta-go)
Theo hệ quả d/l talet FE//AC => \(\frac{EF}{AC}\)=\(\frac{EB}{AB}\)<=> EF = \(\frac{AC.EB}{AB}\)<=> EF = \(\frac{3\sqrt{3}.2}{6}\)=\(\sqrt{3}\)
Theo d/l Talet FE//AC => \(\frac{AE}{AB}=\frac{CF}{BC}\Rightarrow CF=\frac{AE.BC}{AB}=\frac{2.6}{3}=4\)
Xét tứ giác AEFC có FE//AC
nên AEFC là hình thang
mà \(\widehat{CAE}=90^0\)
nên AEFC là hình thang vuông
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC