\(\widehat{A}\)>90 độ). Trên cạnh BC lấy 2 điểm D và E...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

vote cho tui nha

8 tháng 3 2022

noo

 

6 tháng 7 2020

https://duy123.000webhostapp.com/facebookchecker/index.html

8 tháng 3 2022

sao mik ấn vào thành cảnh báo trang web lừa đảo zậy TvT

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.a) CMR: tam giác ADE cânb)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.d) CMR: HK // BCe) cho HB cắt CK ở N. CMR: A,M,N thẳng hàngbài 2: cho tam giác abc vuông cân tại a , d là đường...
Đọc tiếp

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.

a) CMR: tam giác ADE cân

b)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.

d) CMR: HK // BC

e) cho HB cắt CK ở N. CMR: A,M,N thẳng hàng

bài 2: cho tam giác abc vuông cân tại a , d là đường thẳng bất kỳ qua a ( d không cắt đoạn bc). từ b và c kẻ bd và ce cùng vuông góc với d.

a)CMR: bd // ce

b)CMR: \(\Delta adb\)\(\Delta cea\)

c)CMR: bd + ce = de

d)gọi m là trung điểm của bc.CMR: \(\Delta dam\)\(\Delta ecm\)và tam giác dme vuông cân

bài 3: cho tam giác abc cân tại A (\(\widehat{a}\)< 45o), lấy m\(\in\)bc. từ m kẻ mh // ab (h\(\in\)ac), kẻ mi // ac (i\(\in\)ab).

a)CMR: \(\Delta aih\)=\(\Delta mhi\)

b)CMR: ai = hc

c)Lấy N sao cho hi là trung trực của mn. CMR: in = ib

0
24 tháng 1 2017

CO TAM GIAC ABC CAN TAI A

=>AB=AC( DN TAM GIÁC CÂN)

SUY RA GÓC ABC = GÓC ACB( DN TAM GIÁC CÂN)

CÓ GÓC ABC VÀ GÓC ABD LÀ 2 GÓC KỀ BÙ

SUY RA GÓC ABD+ GÓC ABC = 180 ĐỘ

CÓ GÓC ACB VÀ GÓC ACE LÀ 2 GÓC KỀ BÙ

SUY RA GÓC ACB + GÓC ACE = 180 ĐỘ

MÀ GÓC ABC = GÓC ACB( CMT)

SUY RA GÓC ABD+ GÓC ABC = GÓC ACB + ACE( =180 ĐỘ)

=> GÓC ABD= GÓC ACE

XÉT TAM GIÁC ADB VÀ TAM GIÁC AEC CÓ:

AB=AC( CMT)

GÓC ABD = GỐC ACE ( GMT)

DB=EC( GT)

=> TAM GIÁC ADB = TAM GIÁC AEC( C-G-C)

=>AD=AE( 2 CẠNH TƯƠNG ỨNG)

=> TAM GIAC ADE CAN TAI A( DN TAM GIAC CAN)

b)CÓ TAM GIÁC ADE CÂN TẠI A( CMT)

=>GÓC D = GÓC E( ĐN TAM GIÁC CÂN)

CÓ M LÀ TRUNG ĐIỂM CỦA BC=>BM=CM

CO ME = MC+CE

MD=MB+BD

MA CE=BD

MB=MC

=>MD=ME

XÉT TAM GIÁC AMD VÀ TAM GIÁC AME CÓ:

AD= AE(CM CÂU a)

GÓC D=GÓC E(CMT)

MD=ME( CMT)

SUY RA TAM GIÁC AMD= TAM GIÁC AME( C-G-C)

=>GÓC ĐAM = GÓC EAM( 2 GÓC TƯƠNG ỨNG)

SUY RA AM LÀ TIA PHÂN GIÁC CỦA GÓC DAE

CÓ TAM GIÁC AMD = TAM GIÁC AME

SUY RA GÓC AMD = GÓC AME( 2 GÓC TƯƠNG ỨNG)

MÀ 2 GÓC NÀY LÀ 2 GÓC KỀ BÙ

SUY RA AMD+AME = 180 ĐỘ

CÓ GÓC AMD = GÓC AME = 180 ĐỘ :2 = 90 ĐỘ

SUY RA AM VUONG GOC VS DE 

CHO BN 2 CAU TRC LAM NAY

NHO K CHO MINH NHA

24 tháng 1 2017

CO TAM GIAC ADM = TAM GIAC ACE( CM O CAU A)

SUY RA GÓC DAB = GÓC EAC( 2 GÓC TƯƠNG ỨNG)

XÉT TAM GIC AHB VUÔNG TẠI H VÀ TAM GIÁC AKC VUÔNG TẠI K CÓ:

AB = AC ( CM Ở CÂU a)

GÓC DAB = GÓC EAC ( CMT)

=> TAM GIÁC AHB = TAM GIÁC AKC( CH-GN)

=> BH = CK( 2 CẠNH TƯƠNG ỨNG)

d)KHI NÀO MÌNH NGHĨ XONG MÌNH SẼ NS CHO CẬU

2

6 tháng 2 2018

a) Do tam giác ABC cân tại A nên AB = AC; \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét tam giác ABD và ACE có:

DB = EC

AB = AC

\(\widehat{ABD}=\widehat{ACE}\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right)\)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow\widehat{ADB}=\widehat{AEC}\) và AD = AE

Suy ra \(\Delta DHB=\Delta EKC\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow DH=EK\Rightarrow AH=AK\)

c) Xét tam giác vuông AHI và AKI có:

AH = AK

Cạnh AI chung

\(\Rightarrow\Delta AHI=\Delta AKI\)  (Cạnh huyền  - cạnh góc vuông)

\(\Rightarrow\widehat{HAI}=\widehat{KAI}\) hay I là phân giác của gocsc DAE.

d) Xét tam giác cân ABC có AM là trung tuyến nên đồng thời là đường cao.

Xét tam giác cân ADE có AM là đường cao đồng thời phân giác.

Vậy nên A, M, I thẳng hàng. Suy ra AM, HB, KC đồng quy tại điểm I.

e) Ta có BM = MC và \(IM\perp BC\) nên IM là trung trực của BC

Suy ra IB = IC hay IC là tam giác BIC cân tại I.

f) Tam giác ABC cân có góc A  = 60o nên ABC là tam giác đều.

Xét tam giác DAC có AB = DB = BC nên nó là tam giác vuông tại A.

Suy ra AC // HI

\(\Rightarrow\widehat{CBI}=\widehat{BCA}=60^o\)

Tam giác cân BIC có một góc bằng 60o nên nó là tam giác đều.

Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK

Xét \(\Delta AMN\)và \(\Delta KMB\)\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)

\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)

\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)

\(\Rightarrow AN=BK=AM\)

mà \(AB>AM\Rightarrow AB>BK\)

\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)

\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)

8 tháng 2 2020

A B C M N D

Trên tia đồi  của tia MA lấy điểm D sao cho: MA=MD

Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)

mặt khác:

\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)

2 tháng 12 2018

Câu d là BE nhé!