Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nhé!
a. Ta có:
M là trung điểm của AC => BM là đường trung tuyến của tam giác ABC.
N là trung điểm của AB => CN là đường trung tuyến của tam giác ABC.
Mà tam giác ABC cân.
=> BM = CN
Ta có AN + NB = AB
AM + MC = AC
Mà AN = NB ( N là trung điểm của AB)
AM = MC ( M là trung điểm của AC)
AB = AC ( tam giác ABC cân tại A)
=> AN = NB=AM = MC
Xét tam giác ABM và tam giác ACN có:
AB = AC (GT)
BM = CN (cmt)
AM = AN (cmt)
=> tam giác ABM = tam giác ACN (cạnh-cạnh-cạnh)
=> Góc ABM = góc ACN ( hai góc tương ứng)
b. Ta có:
Góc ABM + góc MBC = góc ABC
Góc ACN + góc NCB = góc ACB
Mà góc ABM = góc ACN (cmt)
góc ABC = góc ACB (tam giác ABC cân tại A)
=> Góc MBC = góc NCB
=> Tam giác IBC cân tại I.
CM BNC=CMB
MC=BN ; \(\widehat{B}=\widehat{C}\) ; BC chung
\(\Rightarrow\)BM=CN
CM ABM=ACN
AB=AC ; AM=AN ; \(\widehat{A}\) chung
\(\Rightarrow\)ABM =ACN \(\Rightarrow\) \(\widehat{ABM}=\widehat{ACN}\)
b \(\widehat{ABM}=\widehat{ACN}\) \(\Rightarrow\)\(\widehat{ABI}=\widehat{ACI}\);
\(\Rightarrow\) \(\widehat{AMB}=\widehat{ANC}\)\(\Rightarrow\)\(\widehat{BMC}=\widehat{CNB}\)
Xét BIN vs CIM : BN=CM ; \(\widehat{ACM}=\widehat{ACN};\)\(\widehat{BMC}=\widehat{CNB}\)
\(\Rightarrow\) IB=IC \(\Rightarrow\)IBC cân
c, Xét AIB và AIC : IB =IC ; \(\widehat{ABI}=\widehat{ACI};AB=AC\)
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\)\(\Rightarrow\)AI pg góc A
d, xét BAD và CAD
góc BAI = CAI ; AB=AC ; AD chung
\(\Rightarrow\)góc ADB = ADC mà chúng cộng nhau = 180 \(\Rightarrow\)\(\widehat{D}\)= 90
BẠN TỰ VẼ HÌNH NHA
ta có AM = MC = 1/2 AC ( M là trung đ AC )
AN = NB = 1/2 AB ( N là trung đ AB )
mà AB = AC ( tg ABC cân tại A)
=> AM = MC = AN = NB
tg ANC và tg AMB có
AB = AC ( gt )
^A chung
AN = AM ( cmt )
=> tg ANC = tg AMB ( c-g-c )
=> NC = BM ( 2 cạnh t/ứ ) ( đpcm )
=> ^ABM = ^ACN ( 2 góc t/ứ) ( đpcm)
b, vì tg ABC cân tại A => ^B =^C
mà ^ABM + ^IBC = ^B
^ ANC + ^ICB = ^C
=> ^ICB = ^IBC => tg IBC cân tại I
chúc bn hok tốt