Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vẽ hình ra nhé! chúc bạn thi tốt!!!
a) xét tam giác AEB và tam giac ÀFC có :góc E= góc F=90 độ
góc A chung
ab=ac( tam giác ABC cân tại A)
suy ra tam giác tg AEB= tg AFC( cạnh huyền-góc nhọn)
b)ta có tg AEB=tg AFC ( cmt)
suy ra AE=AF suy ra tam giác AFE cân tại A suy ra góc ÀFE= góc AEF=(180- góc A)/2 (1)
mà tg ABC cân tại A suy ra góc B = góc C= (180-góc A)/2 (2)
từ (1) và (2) suy ra góc AFE= góc B suy ra FE // BC( hai góc đồng vị)
suy ra tứ giác BCEF là hình thang
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a) ta có tam giác ABC cân tại A
=> góc B= góc C
=> 1/2 góc C= 1/2 góc B
=> ABE=ACF
xét tam giác ABE và tam giác AFC có:
AB=AC(gt)
A(chung)
ABE=ACF(cmt)
=> tam giac ABE= tam giác ACF(g.c.g)
=> AF=AE
=> tam giác AEF cân tại A
b)
ta có góc B= góc C
=> 1/2 góc B=1/2 góc C=>EBC=FCB
theo câu a, ta có tam giác ABE= tam giác ACF(g.c.g)
=> BE=CF
xét tam giác BFC vá tam giác CEB có
BE=CF(tam giác ABE= tam giác ACF)
FCB=ECB(cmt)
BC(chung)
=> tam giác BFC= tam giác CEB(c.g.c0
c)
tam giác AFE cân tại A
=>góc AFE=(180*-A)/2
tam giác ABC cân tại B=>ABC=(180*-A)/2
=> ABC=AFE
=> FE//BC(1)
ta có: FB=AB-AF
EC=AC-AE
AB=AC
AF=AE
=> FB=EC(2)
từ (1)(2)=> tứ giác BFEC là hình thang cân
a,Có:Trong tam giác cân,đường phân giác ứng với cạnh đáy đồng thời cũng là đường cao
=>Trong tam giác cân ABC,đường phân giác BE,CF ứng với cạnh đáy đồng thời cũng là đường cao
=>BE là đường cao của tam giác BCA(BE\(\perp\)AC)
CF là đường cao của tam giác CAB(CF\(\perp\)AB)
Xét tam giác ABE và tam giác ACF có:
góc AEB=góc AFC=90*(cmt)
AB=AC(tam giác ABC cân tại A)
góc A chung
=>tam giác ABE=tam giác ACF(cạnh huyền-góc nhọn)
=>AE=AF(2 cạnh tương ứng)
=>tam giác AEF cân tại A
b,Có:tam giác ABC cân tại A
=>góc ABC=góc ACB
=>\(\frac{1}{2}ABC=\frac{1}{2}ACB\)
=>góc EBC=góc FCB(BE,CF là tia phân giác của góc B và C)
Xét tam giác BFC và tam giác CEB có:
góc CFB =góc BEC=90*(cmt)
BE=CF(tam giác ABE=tam giác ACF)
góc EBC=góc FCB(cmt)
=>tam giác BFC=tam giác CEB(cạnh huyền-góc nhọn)
c,Có: tam giác AEF cân tại A(chứng minh câu a)
=>góc AEF=(180*-góc A)/2(1)
Có: tam giác ABC cân tại A(gt)
=>góc ACB=(180*-góc A)/2(2)
Từ (1) và (2)=>góc AEF=góc ACB(=(180*-góc A)/2)
Mà hai góc này ở vị trí đồng vị
=>EF//BC
=>BFEC là hình thang(3)
mà CF=BE(tam giác ABE=tam giác ACF)(4)
Từ (3) và (4)=>Tứ giác BFEC là hình thang cân
a: ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔCAB có
H,K lần lượt là trung điểm của CB,CA
=>HK là đường trung bình của ΔCAB
=>HK//AB và \(HK=\dfrac{AB}{2}\)
Xét tứ giác AKHB có KH//AB
nên AKHB là hình thang
b: Ta có: AD\(\perp\)AH
BC\(\perp\)AH
Do đó: AD/BC
=>AD//BH
Xét tứ giác ADHB có
AD//HB
AB//HD
Do đó: ADHB là hình bình hành
a) Xét \(\Delta ABE\) và \(\Delta ACF\) có :
AB = AC (\(\Delta ABC\)cân)
\(\widehat{A}\)chung
=> \(\Delta ABE\) = \(\Delta ACF\) (cạnh huyền - góc nhọn)
b) Có CF và BE là 2 đường cao
=> Giao điểm H là trực tâm
=> AH là đường cao của BC
c) Xét tứ giác BFEC , vì \(\Delta ABC\) cân
=> \(\widehat{ABC}=\widehat{ACB}\)
=> Tứ giác BFEC là hình thang cân vì 2 góc kề đáy bằng nhau .