K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
19 tháng 5 2022
Bài 1:
a: XétΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)
Do đó: ΔKBC=ΔHCB
b: Ta có: ΔKBC=ΔHCB
nên \(\widehat{MCB}=\widehat{MBC}\)
hay ΔMBC cân tại M
c: Ta có: ΔKBC=ΔHCB
nên KB=HC
Ta có: AK+BK=AB
AH+HC=AC
mà BK=HC
và AB=AC
nên AK=AH
Xét ΔABC có AK/AB=AH/AC
nên KH//BC
a) Xét \(\Delta BKC\) và \(\Delta CHB\) có:
BC (chung
\(\widehat{BKC}=\widehat{CHB}=90^0\)
\(\widehat{KBC}=\widehat{HCB}\) (\(\Delta ABC\) cân tại A)
Do đó: \(\Delta BKC=\Delta CHB\left(ch-gn\right)\)
=> BH = CK (hai cạnh tương ứng)
b) Ta có: BH là đường cao \(\Delta ABC\)
CK là đường cao \(\Delta ABC\)
mà BH cắt CK tại M
=> M là trực tâm
=> AM là đường cao \(\Delta ABC\)
AM cắt BC tại N
mà \(\Delta ABC\) cân tại A
=> BN = NC
Xét \(\Delta BMN\) và \(\Delta CMN\) có:
MN (chung)
\(\widehat{MNB}=\widehat{MNC}=90^0\)
BM = NC (cmt)
Do đó: \(\Delta BMN=\Delta CMN\left(c-g-c\right)\)
=> BM = CM (hai cạnh tương ứng)
=> \(\Delta BMN\) cân tại M
mik chỉ bt thế thui
1)
c) Xét Tam giác AHB và tam giác AKC; có :
AB=AC(gt)
Chung góc A
=> tg AHB= tg AKC(ch-gn)
=> AK=AH
=> tam giác AKH cân tại A
=> góc AKH = (180 độ - góc A )rồi chia cho 2
tam giác ABC cân tại A => góc B = (180 độ - góc A ) rồi chia 2
=> góc AKH = góc B
Mà góc này ở vị trí đồng vị nên KH//BC
d) Muốn chứng minh thì bạn làm như sau :
Kẻ KH//AC sao cho H thuộc BC
Rồi lấy M là trung điểm BC
Ta cm :M cũng là trung điểm KN
tam giác ABC cân tại A => góc ABC = góc ACB
KH//AC => góc KHB = góc ACB
=> góc ABC = góc KHB
=> tam giác KHB cân tại K
=> KH=KB
bạn tự CM : KB=HC nhé
KB=HC mà HC=CN => KB=CN mà KH=KB => KH=CN
r bạn xét tam giác KMH = tam giác NMC (c-g-c)
=> MD=ME
rồi từ đó bạn cũng cm được góc KMN = 180 độ
=> M là trung điểm DE => đpcm