Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\sin\alpha=\frac{C_đ}{C_h}\)
\(\cos\alpha=\frac{C_k}{C_h}\)
\(\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{C_đ}{C_h}}{\frac{C_k}{C_h}}=\frac{C_đ}{C_k}=\tan\alpha\)
b/ \(\frac{\cos\alpha}{\sin\alpha}=\frac{\frac{C_k}{C_h}}{\frac{C_đ}{C_h}}=\frac{C_k}{C_đ}=\cot\alpha\)
c/ \(\tan\alpha.\cot\alpha=\frac{C_đ}{C_k}.\frac{C_k}{C_đ}=1\)
d/ \(\sin^2\alpha=\frac{C_đ^2}{C_h^2}\)
\(\cos^2\alpha=\frac{C_k^2}{C_h^2}\)
\(\Rightarrow\sin^2\alpha+\cos^2\alpha=\frac{C_đ^2+C_k^2}{C_h^2}=\frac{C_h^2}{C_h^2}=1\)
P/s: hok trc lp 9 hay sao mà lm bài bài này?
\(\left(\sin a+\cos a\right)^2=\sin^2a+\cos^2a+2\cdot\sin a\cdot\cos a\)
\(=1+2\cdot\sin a\cdot\cos a\)
\(=\tan^2a\cdot\cot^2a+2\cdot\sin a\cdot\cos a\)
Hướng dẫn giải:
a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC
⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα
tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1
cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα
b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1
Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα
cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khá
a) tgα=ABAC=AB⋅BCAC⋅BCtgα=ABAC=AB⋅BCAC⋅BC
⇒tgα=ABBC÷ACBC=sinαcosα⇒tgα=ABBC÷ACBC=sinαcosα
tgα⋅cotgα=ABAC⋅ACAB=1tgα⋅cotgα=ABAC⋅ACAB=1
cotgα=1tgα=1sinαcosα=cosαsinαcotgα=1tgα=1sinαcosα=cosαsinα
b) sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1sin2α+cos2α=AB2BC2+AC2BC2=BC2BC2=1
Nhận xét: Ba hệ thức tgα=sinαcosαtgα=sinαcosα
cotgα=cosαsinα;sin2α+cos2α=1cotgα=cosαsinα;sin2α+cos2α=1 là những hệ thức cơ bản bạn cần nhớ để giải một số bài tập khác.
đáp án :
a) \(cos^2\alpha\)
b) 1
c) \(sin^2\alpha\)
d) \(sin^2\alpha\)
e) 2
g) 1
h) \(sin^3\alpha\)
i) \(sin^2\alpha\)
Bài 2:
\(\cos a=\sqrt{1-\left(\dfrac{7}{25}\right)^2}=\dfrac{24}{25}\)
\(\tan a=\dfrac{7}{25}:\dfrac{24}{25}=\dfrac{7}{24}\)
\(\cot a=\dfrac{24}{7}\)
Ta có:
\(sin=\dfrac{doi}{huyen}\); \(cos=\dfrac{ke}{chuyen}\);\(tan=\dfrac{doi}{ke}\); \(cot=\dfrac{ke}{doi}\)
Dùng cái này làm được hết mấy câu đó.
nếu bn thấy dùng cách của hùng có hới dài thì bn chỉ cần sử dụng cách đó cho 3 ý trên thôi . còn 3 ý dưới bn có thể sử dụng công thức \(sin^2x+cos^2x=1\) vừa chứng minh xong để giải quyết .
1.
\(\frac{1-2sin\alpha cos\alpha}{sin^2\alpha-cos^2\alpha}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)
\(\Leftrightarrow\frac{1-2sin\alpha cos\alpha}{\left(sin\alpha-cos\alpha\right)\left(sin\alpha+cos\alpha\right)}=\frac{sin\alpha-cos\alpha}{sin\alpha+cos\alpha}\)
\(\Leftrightarrow1-2sin\alpha cos\alpha=\left(sin\alpha-cos\alpha\right)^2\)
\(\Leftrightarrow1-2sin\alpha cos\alpha=sin^2\alpha+cos^2\alpha-2sin\alpha cos\alpha\)
\(\Leftrightarrow1-2sin\alpha cos\alpha=1-2sin\alpha cos\alpha\left(đpcm\right)\)
Bạn giúp mình bài này luôn với nha
Cho tam giác ABC ( AB < AC ) nội tiếp trong đường tròn (O) . Kẻ đường cao AH của tam giác ABC. Gọi P, Q lần lượt là chân đường vuông góc kẻ từ H xuống AB, AC .
1) Chứng minh rằng BCQP là tứ giác nội tiếp.
2) Hai đường thẳng BC,QP cắt nhau tại M . Chứng minh rằng: MH^2 = MB.MC .
3) Đường thẳng MA cắt đường tròn (O) tại K ( K khác A ). Gọi I là tâm đường tròn ngoại tiếp tứ giác BCQP . Chứng minh rằng I , H, K thẳng hàng.
Câu 1:
\(\cos a=\sqrt{1-0.28^2}=\dfrac{24}{25}\)
\(\tan a=\dfrac{0.28}{0.96}=\dfrac{7}{24}\)
\(\cot a=\dfrac{1}{\tan a}=\dfrac{24}{7}\)