Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 số liên tiếp lần lượt là: a;a+1;a+2
Ta có a+(a+1)+(a+2)=(a+a+a)+(1+2)=3a+3 chia hết cho 3(điều phải chứng minh)
Gọi 4 số tự nhiên liên tiếp lần lượt là: a;a+1;a+2;a+3
Ta có: a+(a+1)+(a+2)+(a+3)=(a+a+a+a)+(1+2+3)=4a+6 không chia hết cho 4(diều phải chứng minh)
tổng 5 chữ sô chữ nhiên liên tiếp vẫn chia hết cho 5 sao mà chứng minh được \(VD:1+2+3+4+5=15⋮5\)
Gọi 3 số tự nhiên liên tiếp là a , b , c
a = x . 3
b = x . 3 + 1
c = x . 3 + 2
Tổng của chúng là x . 3 + x . 3 + 1 + x . 3 + 2 = x . 3 . 3 + 1 + 2 = x . 3 . 3 + 3 = x . 9 + 3
Các số hạng của tổng đều chia hết cho 3
=> x . 9 + 3 chia hết cho 3 <=> tổng của 3 số tự nhiên liên tiếp chia hết cho 3
b ) Tương tự câu đầu
Goi ba so chan lien tiep la \(a;a+2;a+4\)
\(\Rightarrow a+a+2+a+4=3a+6\)
Vì a là số chẵn nên a chia hết cho 2 \(\Rightarrow3a⋮6\)
\(\Rightarrow3a+6⋮6\)
Vậy tổng ba số chẵn liên tiêp chia hết cho 6
Xét các tổng \(S_1=a_1\), \(S_2=a_1+a_2\),..., \(S_{10}=a_1+a_2+...+a_{10}\).
Trường hợp có tổng nào trong 10 tổng trên chia hết cho \(10\)ta có đpcm.
Trường hợp không có tổng nào trong 10 tổng trên chia hết cho \(10\), khi đó số dư của các tổng trên cho \(10\)sẽ có 9 giá trị từ \(1\)đến \(9\).
Khi đó sẽ có ít nhất 2 trong 10 tổng trên có cùng số dư khi chia cho \(10\).
Khi đó hiệu của 2 tổng đó sẽ là 1 số chia hết cho \(10\), đó là 1 số hoặc tổng 1 số các số liên tiếp nhau trong dãy.
Ta có đpcm.
Ta thấy một ví dụ:
Coi ba số tự nhiên liên tiếp lần lượt là: 1 ; 2 ; 3
Ta có: Tổng là:
1 + 2 + 3 = 6
6 chia hết cho 3 . Vì thế tổng ba số tự nhiên liên tiếp chia hết cho 3
Thử tương tự với số: 2 ; 3 ; 4 và các số khác
a. Gọi 3 số đó là a , a+1, a+2
Ta có: a+ a+1 + a+2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
a. Gọi 4 số đó là a , a+1, a+2 ,a+4
Ta có: a+ a+1 + a+2 +a+4 = 4a +4
4 chia hết cho 4 => 4a chia hết cho 4
=> 4 a+4 chia hết cho 4
=> Tổng của 4 số tự nhiên liên tiếp luôn chia hết cho 4
ban tren lam sai roi kia vi ho noi khong chia het cho 4 ma