\(Cho\) \(Q=\dfrac{6n-1}{3n+2}\)

a. Tìm

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

a) Ta có :

\(Q=\dfrac{6n-1}{3n+2}=\dfrac{2\left(3n+2\right)-5}{3n+2}=2-\dfrac{5}{3n+2}\)

Để Q có giá trị nguyên thì :

\(5⋮3n+2\)

\(\Leftrightarrow3n+2\inƯ\left(5\right)\)

Ta có bảng :

\(3n+2\) \(1\) \(-1\) \(5\) \(-5\)
\(n\) \(\dfrac{-1}{3}\) \(-1\) \(1\) \(\dfrac{-7}{3}\)
\(Đk\) \(n\in Z\) loại tm tm loại

Vậy \(n\in\left\{-1;1\right\}\) là giá trị cần tìm

19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~ 

19 tháng 5 2017

Để C có giá trị nguyên 

=>6n - 3 chia hết cho 3n + 2

=>6n + 4 - 4 - 3 chia hết cho 3n + 2

=>2.(3n + 2) - 7 chia hết cho 3n + 2

=> 7 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(7) = {1 ; -1; 7 ; -7}

Ta có bảng sau :

3n + 21-17-7
n-1/3-15/3-3

Vì n thuộc Z

=> n = -1 ; -3

16 tháng 3 2018

a, vận dụng cái chia hết

tìm ước chung lớn nhất

chúc lm đc bài

24 tháng 3 2018

a)\(A=3-\frac{4}{3n+2}\)=>\(3n+2\)là ước của 4 =>\(n=0;n=-1;n=-2\)

19 tháng 5 2017

\(A=\frac{n+1}{n-2}=\frac{n-2+2+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}\)

Để A là số nguyên thì \(\frac{3}{n-2}\)là số nguyên 

\(\frac{3}{n-2}\)là 1 số nguyên khi và chỉ khi \(n-2\)là ước của 3

\(\Rightarrow n-2=\left(-1;1;-3;3\right)\)

\(n-2=1\Rightarrow n=1+2=3\)

\(n-2=\left(-1\right)\Rightarrow n=\left(-1\right)+2=1\)

\(n-2=3\Rightarrow n=3+2=5\)

\(n-2=\left(-3\right)\Rightarrow n=\left(-3\right)+2=\left(-1\right)\)

Vậy \(n\)là \(3;1;5;\left(-1\right)\)để A là phân số 

19 tháng 5 2017

Xin lổi 

Để A là giá trị lớn nhất nhé ! nhưng vẩn nhớ k cho tớ nhé 

12 tháng 7 2017

a,Điều kiện: \(3n+2\ne0\Rightarrow n\ne\dfrac{-2}{3}\)

Ta có:\(A=\dfrac{6n-3}{3n+2}=\dfrac{6n+4-7}{3n+2}=2-\dfrac{7}{3n+2}\)

Do 2 nguyên nên để A có giá trị nguyên thì \(\dfrac{7}{3n+2}\) nguyên => 3n+2 là ước của 7 \(\Rightarrow3n+2\in\left\{\pm1;\pm7\right\}\)

+) Với 3n+2=1 => 3n=-1 => \(n=-\dfrac{1}{3}\) (ko thỏa mãn)

+) Với 3n+2=-1 => 3n=-3 => n=-1 (thỏa mãn)

+) Với 3n+2=7 => 3n=5 => n=3/5 (ko thỏa mãn)

+) Với 3n+2=-7 => 3m=-9 => n=-3 (thỏa mãn)

Vậy \(n\in\left\{-1;-3\right\}\)

b, Do \(A=2-\dfrac{7}{3n+2}\) => để A đạt GTNN thì \(\dfrac{7}{3n+2}\) lớn nhất. Vì 7 dương nên để \(\dfrac{7}{3n+2}\) lớn nhất thì 3n+2 phải có giá trị dương nhỏ nhất.

\(n\in Z\) => n=0

Với n=0 thì \(A=2-\dfrac{7}{3.0+2}=2-3,5=-1,5\)

Vậy minA=-1,5 khi n=2

 

12 tháng 7 2017

sai rùi batngo